Description

​ 给你一个\(~n \times m~\)的\(~01~\)矩阵,一个人在这个矩阵中走了\(~k~\)步,每一次都往四联通方向中的一个走一步。给定这个人每一步走的方向,已知这个人经过的每一步都没有经过原矩阵中\(~1~\)的位置。问合法的起点有多少种?保证至少有一组解。\(~1 \leq n, m \leq 1500, ~k \leq 5 \times 10 ^ 6~\).

Solution

​ 不难发现那条路径通过补全\(~0~\)之后其实就是一个\(~01~\)矩阵,其中的\(~1~\)就是原路径。问题变成了把该矩阵放在原矩阵中(严格内含)不产生冲突的方案数,实质上就是起来全是\(~0~\)的方案数。考虑怎么快速求这个问题。把该矩阵通过补\(~0~\)变成和原矩阵一样大的规模,把两个矩阵都拉成长度为\(~n \times m~\)的序列,倒序一个序列做\(~FFT~\)或\(~NTT~\)在看对应位置上是否为\(~0~\)统计答案即可。至于这样为什么是对的,可以考虑这个对应位置的数代表的东西到底是什么,卷积中\(~ans_i~\)代表下标和为\(~i~\)的各项乘积之和,由于之前做过一个区间反转,所以这个\(~ans_i~\)就代表路径矩阵在原矩阵中起始位置为\(~i~\)时矩阵各项匹配起来的乘积的和,而在只有\(~0, 1~\)的情况下,乘法和或的运算法则一样。所以当\(~ans_i~\)为\(~0~\)时,就代表这个匹配位置是合法的,因为没有任何一个\(~1~\)同位。

Code

#include<bits/stdc++.h>
#define For(i, j, k) for(int i = j; i <= k; ++i)
#define Forr(i, j, k) for(int i = j; i >= k; --i)
using namespace std; inline int read() {
int x = 0, p = 1; char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') p = -1;
for(; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x *= p;
} inline void File() {
#ifndef ONLINE_JUDGE
freopen("loj6388.in", "r", stdin);
freopen("loj6388.out", "w", stdout);
#endif
} const int N = 1500 + 10, M = (N * N) << 2, mod = 998244353;
int a[M], b[M], rev[M], powg[M], invg[M], k;
int n, m, cnt1, cnt2, siz, len, bit, c[N << 1][N << 1];
char ss[M]; inline int qpow(int a, int b) {
static int res;
for (res = 1; b; a = 1ll * a * a % mod, b >>= 1)
if (b & 1) res = 1ll * res * a % mod;
return res;
} inline void NTT(int *a, int flag) {
For(i, 0, siz - 1) if (rev[i] > i) swap(a[rev[i]], a[i]);
for (int i = 2; i <= siz; i <<= 1) {
int wn = flag ? powg[i] : invg[i];
for (int j = 0; j < siz; j += i) {
int w = 1;
for (int k = 0; k < (i >> 1); ++ k, w = 1ll * w * wn % mod) {
int x = a[j + k], y = 1ll * w * a[j + k + (i >> 1)] % mod;
a[j + k] = (x + y) % mod, a[j + k + (i >> 1)] = (x - y + mod) % mod;
}
}
}
if (!flag) {
int g = qpow(siz, mod - 2);
For(i, 0, siz) a[i] = 1ll * a[i] * g % mod;
}
} int main() {
File();
n = read(), m = read(), k = read(); For(i, 1, n) {
scanf("%s", ss + 1);
For(j, 1, m) a[(i - 1) * m + j - 1] = ss[j] - 48;
}
cnt1 = n * m - 1; int x2 = n, y2 = m, x0 = n, y0 = m, lx = n, ly = m;
scanf("%s", ss + 1), c[lx][ly] = 1;
For(i, 1, k) {
if (ss[i] == 'w') c[-- lx][ly] = 1;
if (ss[i] == 'a') c[lx][-- ly] = 1;
if (ss[i] == 's') c[++ lx][ly] = 1;
if (ss[i] == 'd') c[lx][++ ly] = 1;
x0 = min(x0, lx), y0 = min(y0, ly);
x2 = max(x2, lx), y2 = max(y2, ly);
} For(i, x0, x0 + n - 1) For(j, y0, y0 + m - 1) b[cnt1 - (cnt2 ++)] = c[i][j];
-- cnt2; len = cnt1 + cnt2;
for (siz = 1; siz <= len; siz <<= 1) ++ bit;
For(i, 0, siz - 1) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1)); int g = qpow(3, mod - 2);
for (int i = 1; i <= siz; i <<= 1) {
invg[i] = qpow(g, (mod - 1) / i);
powg[i] = qpow(3, (mod - 1) / i);
} NTT(a, 1), NTT(b, 1);
For(i, 0, siz - 1) a[i] = 1ll * a[i] * b[i] % mod;
NTT(a, 0); int ans = 0;
For(i, 1, n - (x2 - x0)) For(j, 1, m - (y2 - y0))
if (a[cnt1 + (i - 1) * m + j - 1] == 0) ++ ans; cout << ans << endl;
return 0;
}

[loj6388] 「THUPC2018」赛艇 / Citing的更多相关文章

  1. 「THUPC2018」赛艇 / Citing

    https://loj.ac/problem/6388 矩形匹配,小地图经过位置为1,和大地图匹配不能同时存在一个1的位置,就可以是一个当前位置 1.bitset压位,....O(n^2m^2/64) ...

  2. 【LibreOJ】#6396. 「THUPC2018」弗雷兹的玩具商店 / Toyshop 线段树+完全背包

    [题目]#6396. 「THUPC2018」弗雷兹的玩具商店 / Toyshop [题意]给定一个长度为n的物品序列,每个物品有价值.不超过m的重量.要求支持以下三种操作:1.物品价值区间加减,2.物 ...

  3. 【LibreOJ】#6392. 「THUPC2018」密码学第三次小作业 / Rsa 扩展欧几里得算法

    [题目]#6392. 「THUPC2018」密码学第三次小作业 / Rsa [题意]T次询问,给定正整数c1,c2,e1,e2,N,求正整数m满足: \(c_1=m^{e_1} \ \ mod \ \ ...

  4. 【LibreOJ】#6395. 「THUPC2018」城市地铁规划 / City 背包DP+Prufer序

    [题目]#6395. 「THUPC2018」城市地铁规划 / City [题意]给定n个点要求构造一棵树,每个点的价值是一个关于点度的k次多项式,系数均为给定的\(a_0,...a_k\),求最大价值 ...

  5. LOJ#6387 「THUPC2018」绿绿与串串 / String (Manacher || hash+二分)

    题目描述 绿绿和 Yazid 是好朋友.他们在一起做串串游戏. 我们定义翻转的操作:把一个串以最后一个字符作对称轴进行翻转复制.形式化地描述就是,如果他翻转的串为 RRR,那么他会将前 ∣R∣−1个字 ...

  6. 【LOJ】#6391. 「THUPC2018」淘米神的树 / Tommy

    题解 一道非常神仙的计数题 如果只有一个点,就是非常简单的树型dp \(f_{u} = (siz_{u} - 1)! \prod_{v \in son_{u}} \frac{f_{v}}{siz_{v ...

  7. loj6392 「THUPC2018」密码学第三次小作业 / Rsa

    还是挺好做的,\((e_1,e_2)=1 \Rightarrow e_1s+e_2t=0\),\(m \equiv m^1 \equiv m^{e_1s+e_2t} \equiv c_1^s c_2^ ...

  8. loj6387 「THUPC2018」绿绿与串串 / String

    还是很好做的,大致就是manacher,每个位置为中心的最长回文串要是能抵到最右边就合法,要是能抵到最左边,那这个点的是否合法取决于以这个点为中心的最长回文串的右端点是否合法. #include &l ...

  9. 【LOJ6397】「THUPC2018」蛋糕 / Cake(搜索)

    点此看题面 大致题意: 把一个\(a\times b\times c\times d\)的\(4\)维图形划分成\(a\times b\times c\times d\)个小块,求有\(0\sim8\ ...

随机推荐

  1. 泛函p121可分Hilbert空间都同构于l^2

    如何理解最后面两句话, L^2与l^2同构 L^2里面 有理系数多项式 是可数稠密子集 所以L^2可分 可分Hilbert空间都同构于 l^2 傅里叶级数是一个稠密的子集

  2. 团队作业5——测试与发布(alpha阶段)

    Deadline: 2018-5-9 10:00PM,以提交至班级博客时间为准. 根据以下要求,完成对本团队项目的测试与发布. 测试 请根据团队项目中软件的需求文档.功能说明.系统设计和测试计划,写出 ...

  3. C# 往Datatable中添加新行的步骤

    以一个实例说明 //录入年份绑定 public void YearList(FineUIPro.DropDownList ddlYear) { //年份从15年到当前年//起止年份 ; int yea ...

  4. 通过 MySQL 存储原理来分析排序和锁(转)

    先抛出几个问题 为什么不建议使用订单号作为主键? 为什么要在需要排序的字段上加索引? for update 的记录不存在会导致锁住全表? redolog 和 binlog 有什么区别? MySQL 如 ...

  5. 调整分区大小 转载--------------http://blog.csdn.net/perfectzq/article/details/73606119

    centos7重新调整分区大小 centos 7 调整 root 和 home 的容量大小 查看磁盘的空间大小: df -h  备份/home : cp -r /home/ homebak/ 卸载​  ...

  6. 在layui中使用ajax不起作用

    又是一个坑,坑了我一个下午.在layui插件中使用jquery的ajax请求,一点反应都没有,不管是改成get还是post请求,后台毫无反应,前端谷歌调试也没有报半点错. js代码如下: layui. ...

  7. rem 自适应、整体缩放

    html{ font-size: calc(100vw/7.5); } 说明: 100vw是设备的宽度,除以7.5可以让1rem的大小在iPhone6下等于100px. 若是低版本的设备不支持rem, ...

  8. windows php7 安装redis扩展

    1,首先查看phpinfo 这会决定扩展文件版本(特别注意以php版本的architecture是x86还是64为准,不能以操作系统为准): 2.根据PHP版本号,编译器版本号和CPU架构  一定要根 ...

  9. kubernetes资源类别介绍

    类别 名称 资源对象 Pod.ReplicaSet.ReplicationController.Deployment.StatefulSet.DaemonSet.Job.CronJob.Horizon ...

  10. python设计模式第二十四天【命令模式】

    1.使用场景 (1)调用过程比较繁琐,需要封装 (2)调用参数需要进行处理封装 (3)需要添加额外的功能,例如,日志,缓存,操作记录等 2.代码实现 #!/usr/bin/env python #! ...