[loj6388] 「THUPC2018」赛艇 / Citing
Description
给你一个\(~n \times m~\)的\(~01~\)矩阵,一个人在这个矩阵中走了\(~k~\)步,每一次都往四联通方向中的一个走一步。给定这个人每一步走的方向,已知这个人经过的每一步都没有经过原矩阵中\(~1~\)的位置。问合法的起点有多少种?保证至少有一组解。\(~1 \leq n, m \leq 1500, ~k \leq 5 \times 10 ^ 6~\).
Solution
不难发现那条路径通过补全\(~0~\)之后其实就是一个\(~01~\)矩阵,其中的\(~1~\)就是原路径。问题变成了把该矩阵放在原矩阵中(严格内含)不产生冲突的方案数,实质上就是或起来全是\(~0~\)的方案数。考虑怎么快速求这个问题。把该矩阵通过补\(~0~\)变成和原矩阵一样大的规模,把两个矩阵都拉成长度为\(~n \times m~\)的序列,倒序一个序列做\(~FFT~\)或\(~NTT~\)在看对应位置上是否为\(~0~\)统计答案即可。至于这样为什么是对的,可以考虑这个对应位置的数代表的东西到底是什么,卷积中\(~ans_i~\)代表下标和为\(~i~\)的各项乘积之和,由于之前做过一个区间反转,所以这个\(~ans_i~\)就代表路径矩阵在原矩阵中起始位置为\(~i~\)时矩阵各项匹配起来的乘积的和,而在只有\(~0, 1~\)的情况下,乘法和或的运算法则一样。所以当\(~ans_i~\)为\(~0~\)时,就代表这个匹配位置是合法的,因为没有任何一个\(~1~\)同位。
Code
#include<bits/stdc++.h>
#define For(i, j, k) for(int i = j; i <= k; ++i)
#define Forr(i, j, k) for(int i = j; i >= k; --i)
using namespace std;
inline int read() {
int x = 0, p = 1; char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') p = -1;
for(; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x *= p;
}
inline void File() {
#ifndef ONLINE_JUDGE
freopen("loj6388.in", "r", stdin);
freopen("loj6388.out", "w", stdout);
#endif
}
const int N = 1500 + 10, M = (N * N) << 2, mod = 998244353;
int a[M], b[M], rev[M], powg[M], invg[M], k;
int n, m, cnt1, cnt2, siz, len, bit, c[N << 1][N << 1];
char ss[M];
inline int qpow(int a, int b) {
static int res;
for (res = 1; b; a = 1ll * a * a % mod, b >>= 1)
if (b & 1) res = 1ll * res * a % mod;
return res;
}
inline void NTT(int *a, int flag) {
For(i, 0, siz - 1) if (rev[i] > i) swap(a[rev[i]], a[i]);
for (int i = 2; i <= siz; i <<= 1) {
int wn = flag ? powg[i] : invg[i];
for (int j = 0; j < siz; j += i) {
int w = 1;
for (int k = 0; k < (i >> 1); ++ k, w = 1ll * w * wn % mod) {
int x = a[j + k], y = 1ll * w * a[j + k + (i >> 1)] % mod;
a[j + k] = (x + y) % mod, a[j + k + (i >> 1)] = (x - y + mod) % mod;
}
}
}
if (!flag) {
int g = qpow(siz, mod - 2);
For(i, 0, siz) a[i] = 1ll * a[i] * g % mod;
}
}
int main() {
File();
n = read(), m = read(), k = read();
For(i, 1, n) {
scanf("%s", ss + 1);
For(j, 1, m) a[(i - 1) * m + j - 1] = ss[j] - 48;
}
cnt1 = n * m - 1;
int x2 = n, y2 = m, x0 = n, y0 = m, lx = n, ly = m;
scanf("%s", ss + 1), c[lx][ly] = 1;
For(i, 1, k) {
if (ss[i] == 'w') c[-- lx][ly] = 1;
if (ss[i] == 'a') c[lx][-- ly] = 1;
if (ss[i] == 's') c[++ lx][ly] = 1;
if (ss[i] == 'd') c[lx][++ ly] = 1;
x0 = min(x0, lx), y0 = min(y0, ly);
x2 = max(x2, lx), y2 = max(y2, ly);
}
For(i, x0, x0 + n - 1) For(j, y0, y0 + m - 1) b[cnt1 - (cnt2 ++)] = c[i][j];
-- cnt2;
len = cnt1 + cnt2;
for (siz = 1; siz <= len; siz <<= 1) ++ bit;
For(i, 0, siz - 1) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
int g = qpow(3, mod - 2);
for (int i = 1; i <= siz; i <<= 1) {
invg[i] = qpow(g, (mod - 1) / i);
powg[i] = qpow(3, (mod - 1) / i);
}
NTT(a, 1), NTT(b, 1);
For(i, 0, siz - 1) a[i] = 1ll * a[i] * b[i] % mod;
NTT(a, 0);
int ans = 0;
For(i, 1, n - (x2 - x0)) For(j, 1, m - (y2 - y0))
if (a[cnt1 + (i - 1) * m + j - 1] == 0) ++ ans;
cout << ans << endl;
return 0;
}
[loj6388] 「THUPC2018」赛艇 / Citing的更多相关文章
- 「THUPC2018」赛艇 / Citing
https://loj.ac/problem/6388 矩形匹配,小地图经过位置为1,和大地图匹配不能同时存在一个1的位置,就可以是一个当前位置 1.bitset压位,....O(n^2m^2/64) ...
- 【LibreOJ】#6396. 「THUPC2018」弗雷兹的玩具商店 / Toyshop 线段树+完全背包
[题目]#6396. 「THUPC2018」弗雷兹的玩具商店 / Toyshop [题意]给定一个长度为n的物品序列,每个物品有价值.不超过m的重量.要求支持以下三种操作:1.物品价值区间加减,2.物 ...
- 【LibreOJ】#6392. 「THUPC2018」密码学第三次小作业 / Rsa 扩展欧几里得算法
[题目]#6392. 「THUPC2018」密码学第三次小作业 / Rsa [题意]T次询问,给定正整数c1,c2,e1,e2,N,求正整数m满足: \(c_1=m^{e_1} \ \ mod \ \ ...
- 【LibreOJ】#6395. 「THUPC2018」城市地铁规划 / City 背包DP+Prufer序
[题目]#6395. 「THUPC2018」城市地铁规划 / City [题意]给定n个点要求构造一棵树,每个点的价值是一个关于点度的k次多项式,系数均为给定的\(a_0,...a_k\),求最大价值 ...
- LOJ#6387 「THUPC2018」绿绿与串串 / String (Manacher || hash+二分)
题目描述 绿绿和 Yazid 是好朋友.他们在一起做串串游戏. 我们定义翻转的操作:把一个串以最后一个字符作对称轴进行翻转复制.形式化地描述就是,如果他翻转的串为 RRR,那么他会将前 ∣R∣−1个字 ...
- 【LOJ】#6391. 「THUPC2018」淘米神的树 / Tommy
题解 一道非常神仙的计数题 如果只有一个点,就是非常简单的树型dp \(f_{u} = (siz_{u} - 1)! \prod_{v \in son_{u}} \frac{f_{v}}{siz_{v ...
- loj6392 「THUPC2018」密码学第三次小作业 / Rsa
还是挺好做的,\((e_1,e_2)=1 \Rightarrow e_1s+e_2t=0\),\(m \equiv m^1 \equiv m^{e_1s+e_2t} \equiv c_1^s c_2^ ...
- loj6387 「THUPC2018」绿绿与串串 / String
还是很好做的,大致就是manacher,每个位置为中心的最长回文串要是能抵到最右边就合法,要是能抵到最左边,那这个点的是否合法取决于以这个点为中心的最长回文串的右端点是否合法. #include &l ...
- 【LOJ6397】「THUPC2018」蛋糕 / Cake(搜索)
点此看题面 大致题意: 把一个\(a\times b\times c\times d\)的\(4\)维图形划分成\(a\times b\times c\times d\)个小块,求有\(0\sim8\ ...
随机推荐
- Makes And The Product CodeForces - 817B (思维+构造)
B. Makes And The Product time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- iframe跨域解决方案
公司某个功能用的是iframe,由于跨域的原因,我们不能直接设置父级页面iframe的高度,所以用了一个中间页home来完成父级页面iframe的高度设置,这种中间页其实很多时候不好用,因为涉及到页面 ...
- 解决sqoop连接mysq错误
一.问题描述 1.由于当前集群没有配置Zookeeper.hcatalog.accumlo,因此应该在sqoop的配置文件中注释掉判断Zookeeper.hcatalog.accumlo路径是否正确的 ...
- Eclipse支持文件UTF-8编码
Eclipse修改编码格式_百度经验https://jingyan.baidu.com/article/2009576193ee38cb0721b416.html 这篇最棒 如何为eclipse中的文 ...
- mongoDB 安装和配置环境变量,超详细版本
下载mongoDB进行安装:https://www.mongodb.com/ 到Community Se ...
- python--logging日志
一个非常详细的日志使用请看这里:http://www.cnblogs.com/dkblog/archive/2011/08/26/2155018.html # 导入日志模块 import loggin ...
- MySQL 性能调优之索引
原文:http://bbs.landingbj.com/t-0-245452-1.html 对于索引的优化,我们第一需要找到合适的字段,第二创建索引找到合适的顺序,第三要找到合适的比例,第四是要做合适 ...
- http1.0 1.1 与2.0
长连接 HTTP 1.0需要使用keep-alive参数来告知服务器端要建立一个长连接,而HTTP1.1默认支持长连接. HTTP是基于TCP/IP协议的,创建一个TCP连接是需要经过三次握手的,有一 ...
- LLVM的安装
1. 官网下载 llvm 2. 官网下载cmake 3. configure 执行 llvm 发现报错 4. 解压缩 cmake 5.将cmake 下面的bin 目录放到环境变量里面去 6. 创建一个 ...
- Linux 文件及目录管理命令基础
pwd 显示当前所在目录 cd 切换目录 cd 命令语法 cd [选项] 目录 cd 的常用选项: cd ~ /cd 切换到当前用户的加目录 cd . 保持当前目录不变 cd .. 切换到上级目录 ...