Linux内核很吊之 module_init解析 (下)【转】
转自:https://blog.csdn.net/richard_liujh/article/details/46758073
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Richard_LiuJH/article/details/46758073
Linux内核很吊之 module_init解析 (下)
个人笔记,欢迎转载,请注明出处,共同分享 共同进步
http://blog.csdn.net/richard_liujh/article/details/46758073 -- 刘金辉
忙了一段时间,终于有时间把inux内核很吊之 module_init解析 (下)整理完毕。
从上一篇博文http://blog.csdn.net/richard_liujh/article/details/45669207介绍了module_init宏函数,简单来说上篇博文介绍module_init如何注册驱动的init函数,这篇博文将详细分析kernel启动过程又是如何执行我们注册的init函数。
如果了解过linux操作系统启动流程,那么当bootloader加载完kernel并解压并放置与内存中准备开始运行,首先被调用的函数是start_kernel。start_kernel函数顾名思义,内核从此准备开启了,但是start_kernel做的事情非常多,简单来说为内核启动做准备工作,复杂来说也是非常之多(包含了自旋锁检查、初始化栈、CPU中断、立即数、初始化页地址、内存管理等等等...)。所以这篇博文我们还是主要分析和module_init注册函数的执行过程。
start_kernel函数在 init/main.c文件中,由于start_kernel本身功能也比较多,所以为了简介分析过程我把函数从start_kernel到do_initcalls的调用过程按照如下方式展现出来
start_kernel -> reset_init -> kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
|
|->static int __ref kernel_init(void *unused)
|
|-> kernel_init_freeable( )
|
|-> do_basic_setup();
|
|——> do_initcalls();
在上面的调用过程中,通过kernel_thread注册了一个任务kernel_init,kernel_thread的函数原型如下。
/*
* Create a kernel thread.
*/
pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
{
return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
(unsigned long)arg, NULL, NULL);
}
kernel_thread创建了一个内核线程,也就是创建一个线程完成kernel_init的任务。通过kernel_init的逐层调用,最后调用到我们目前最应该关心的函数do_initcalls;
do_initcalls函数如下
static void __init do_initcalls(void)
{
int level;
for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++)
do_initcall_level(level);
}
这个函数看起来就非常简单了,里面有for循环,每循环一次就调用一次do_initcall_level(level);其实可以发现在我们分析kernel源码时,大部分函数都能从函数名猜到函数的功能,这也是一名优秀程序猿的体现,大道至简,悟在天成。
接下来我们就开始具体分析do_initcalls函数啦~~
for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++)
这句for循环很简单,循环执行条件是level < ARRAY_SIZE(initcall_levels)。
ARRAY_SIZE是一个宏,用于求数组元素的个数,在文件include\linux\kernel.h文件中
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
当然ARRAY_SIZE宏里面还多了一个__must_be_array(),这个主要是确保我们传过来的arr是一个数组,防止ARRAY_SIZE的误用。所以在我们写kernel驱动程序时,遇到需要求一个数组的大小请记得使用ARRAY_SIZE。有安全感又高大上...哈哈
那么,initcall_levels是不是数组呢?如果是,里面有什么内容?
还是在文件main.c中有数组initcall_levels的定义
static initcall_t *initcall_levels[] __initdata = {
__initcall0_start,
__initcall1_start,
__initcall2_start,
__initcall3_start,
__initcall4_start,
__initcall5_start,
__initcall6_start,
__initcall7_start,
__initcall_end,
};
这个数组可不能小看他,如果看过module_init解析(上)的朋友,对数组里面的名字“__initcall0 __initcall1 ... __initcall7”有一点点印象吧。
谈到数组,我们知道是元素的集合,那么initcall_levels数组中得元素是什么???(看下面的分析前,请先弄清楚数组指针 和指针数组的区别,不然容易走火入魔...)
static initcall_t *initcall_levels[] __initdata = {
很显然,这个数组定义非常高大上。不管如何高大上,总离不开最基本的知识吧。所以我先从两点去探索:
1. 数组的名字,根据数组标志性的‘[ ]’,我们应该很容易知道数组名字是initcall_levels
2.数组的元素类型,由于定义中出现了指针的符号‘ * ’,也很容知道initcall_levels原来是一个指针数组啦。
所以现在我们知道了initcall_levels数组里面保存的是指针啦,也就是指针的一个集合而已。掰掰脚趾数一下也能知道initcall_levels数组里面有9个元素,他们都是指针。哈哈
对于这个数组,我们先暂且到这儿,因为我们已经知道了数组的个数了,也就知道for循环的循环次数。(后面还会继续分析这个数组,所以要由印象)
我们再回来看看do_initcalls:
static void __init do_initcalls(void)
{
int level;
for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++)
do_initcall_level(level);
}
ARRAY_SIZE求出了数组initcall_levels的元素个数为9,所以level变量从 0 ~ 7都是满足level < ARRAY_SIZE(initcall_levels) - 1既level < 9 - 1。一共循环了8次。
循环8此就调用了do_initcall_level(level) 8次。
do_initcall_level函数原型如下:
static void __init do_initcall_level(int level)
{
extern const struct kernel_param __start___param[], __stop___param[];
initcall_t *fn;
strcpy(static_command_line, saved_command_line);
parse_args(initcall_level_names[level],
static_command_line, __start___param,
__stop___param - __start___param,
level, level,
&repair_env_string);
for (fn = initcall_levels[level]; fn < initcall_levels[level+1]; fn++)
do_one_initcall(*fn);
}
在do_initcall_level函数中,有如下部分是和内核初始化过程调用parse_args对选项进行解析并调用相关函数去处理的。其中的__start___param和__stop___param也是可以在内核链接脚本vmlinux.lds中找到的。
extern const struct kernel_param __start___param[], __stop___param[];
strcpy(static_command_line, saved_command_line);
parse_args(initcall_level_names[level],
static_command_line, __start___param,
__stop___param - __start___param,
level, level,
&repair_env_string);
如果将上面初始化过程中命令行参数解析过程忽略,那么就剩下的内容也就是我们最想看到的内容了
for (fn = initcall_levels[level]; fn < initcall_levels[level+1]; fn++)
do_one_initcall(*fn);
这个也很简单,不就是一个for循环嘛,so easy~!!
那么接下来我们就开始分析这个for循环:
1. for循环开始,fn = initcall_levels[level],initcall_levels是上面分析过的数组,数组里面存放着指针,所以fn也应该是指针咯。那么看看fn的定义
initcall_t *fn;
fn确实是一个initcall_t类型的指针,那initcall_t是什么?
在文件include\linux\init.h文件中找到其定义
/*
* Used for initialization calls..
*/
typedef int (*initcall_t)(void);
typedef void (*exitcall_t)(void);
从上面的定义可以知道,initcall_t原来是一个函数指针的类型定义。函数的返回值是int类型,参数是空 void。从注释也可以看出,initcall_t是初始化调用的。
简单来说,fn是一个函数指针。
2. 每循环一次,fn++。循环执行的条件是fn < initcall_levels[level+1];
这里fn++就不是很容易理解了,毕竟不是一个普通的变量而是一个函数指针,那么fn++有何作用呢??
首先,fn = initcall_levels[level],所以我们还是有必要去再看看initcall_levels数组了(之前暂时没有分析的,现在开始分析了)
static initcall_t *initcall_levels[] __initdata = {
__initcall0_start,
__initcall1_start,
__initcall2_start,
__initcall3_start,
__initcall4_start,
__initcall5_start,
__initcall6_start,
__initcall7_start,
__initcall_end,
};
已经知道了initcall_levels是一个指针数组,也就是说数组的元素都是指针,指针是指向什么类型的数据呢? 是initcall_t类型的,上面刚刚分析过initcall_t是函数指针的类型定义。
这样一来,initcall_levels数组里面保存的元素都是函数指针啦。
很显然这是通过枚举的方式定义了数组initcall_levels,那么元素值是多少??(数组中元素是分别是 __initcall0_start __initcall1_start __initcall2_start ... __initcall7_start __initcall_end)
通过寻找会发现在main.c文件中有如下的声明
extern initcall_t __initcall_start[];
extern initcall_t __initcall0_start[];
extern initcall_t __initcall1_start[];
extern initcall_t __initcall2_start[];
extern initcall_t __initcall3_start[];
extern initcall_t __initcall4_start[];
extern initcall_t __initcall5_start[];
extern initcall_t __initcall6_start[];
extern initcall_t __initcall7_start[];
extern initcall_t __initcall_end[];
所以__initcall0_start __initcall1_start __initcall2_start ... __initcall7_start __initcall_end都是initcall_t类型的数组名,数组名也就是指针。只是这些都是extern声明的,所以在本文件里面找不到他们的定义出。那么他们在哪一个文件??答案还是 链接脚本 vmlinux.lds,而且我们已经看过这些名字很多次了...
下面再次把链接脚本中相关的内容拿出来:(相关的解释请参考 module_init 解析--上)
__init_begin = .;
. = ALIGN(4096); .init.text : AT(ADDR(.init.text) - 0) { _sinittext = .; *(.init.text) *(.cpuinit.text) *(.meminit.text) _einittext = .; }
.init.data : AT(ADDR(.init.data) - 0) { *(.init.data) *(.cpuinit.data) *(.meminit.data) *(.init.rodata) *(.cpuinit.rodata) *(.meminit.rodata) . = ALIGN(32); __dtb_start = .; *(.dtb.init.rodata) __dtb_end = .; . = ALIGN(16); __setup_start = .; *(.init.setup) __setup_end = .; __initcall_start = .; *(.initcallearly.init) __initcall0_start = .; *(.initcall0.init) *(.initcall0s.init) __initcall1_start = .; *(.initcall1.init) *(.initcall1s.init) __initcall2_start = .; *(.initcall2.init) *(.initcall2s.init) __initcall3_start = .; *(.initcall3.init) *(.initcall3s.init) __initcall4_start = .; *(.initcall4.init) *(.initcall4s.init) __initcall5_start = .; *(.initcall5.init) *(.initcall5s.init) __initcallrootfs_start = .; *(.initcallrootfs.init) *(.initcallrootfss.init) __initcall6_start = .; *(.initcall6.init) *(.initcall6s.init) __initcall7_start = .; *(.initcall7.init) *(.initcall7s.init) __initcall_end = .; __con_initcall_start = .; *(.con_initcall.init) __con_initcall_end = .; __security_initcall_start = .; *(.security_initcall.init) __security_initcall_end = .; . = ALIGN(4); __initramfs_start = .; *(.init.ramfs) . = ALIGN(8); *(.init.ramfs.info) }
. = ALIGN(4);
所以在main.c文件中extern声明的那些数组__initcall0_start ... __initcall7_start __initcall_end其实就是上面链接脚本vmlinux.lds中定义的标号(也可以暂且简单粗暴认为是地址)。
为了好理解,把其中的__initcall0_start单独拿出来
__initcall0_start = .; *(.initcall0.init) *(.initcall0s.init)
这里的意思是,__initcall0_start 是一段地址的开始,从这个地址开始链接所有.initcall0.init和.initcall0s.init段的内容。那.initcall0.init和.initcall0s.init段有什么东东??这就是上篇博文中解释的。简单来说,就是我们通过module_init(xxx)添加的内容,只是module_init对应的level值默认为6而已。
总而言之,__initcallN_start(其中N = 0,1,2...7)地址开始存放了一系列优先级为N的函数。我们通过module_init注册的函数优先级为6
现在我们回过头再去看看上面的for循环
for (fn = initcall_levels[level]; fn < initcall_levels[level+1]; fn++)
<span style="white-space: pre;"> </span>do_one_initcall(*fn);
一开始fn = initcall_levels[level],假设level = 0。也就是fn = initcall_levels[0] = __initcall0_start。所以fn指向了链接脚本中的__initcall0_start地址,每当fn++也就是fn逐次指向注册到.initcall0.init和.initcall0s.init段中的函数地址了。for循环的条件是fn < initcall_levels[level + 1] = initcall_levels[0 + 1] = initcall_level[1] = __initcall1_start。
为了能直观看出fn增加的范围,用如下的简易方式表达一下。
__initcall0_start __initcall1_start __initcall2_start __initcall3_start ... ... __initcall7_start __initcall_end
| <--- fn++ -->|| <--- fn++ -->| | <--- fn++ ->| | <-- fn++ -->| ... ... | <--- fn++ -->| END
了解这一点,我们已经接近胜利的彼岸~~
for (fn = initcall_levels[level]; fn < initcall_levels[level+1]; fn++)
do_one_initcall(*fn);
最后我们要了解的就是for循环每次执行的内容do_one_initcall(*fn),其函数原型如下
int __init_or_module do_one_initcall(initcall_t fn)
{
int count = preempt_count();
int ret;
if (initcall_debug)
ret = do_one_initcall_debug(fn);
else
ret = fn();
msgbuf[0] = 0;
if (preempt_count() != count) {
sprintf(msgbuf, "preemption imbalance ");
preempt_count() = count;
}
if (irqs_disabled()) {
strlcat(msgbuf, "disabled interrupts ", sizeof(msgbuf));
local_irq_enable();
}
WARN(msgbuf[0], "initcall %pF returned with %s\n", fn, msgbuf);
return ret;
}
do_one_initcall函数就非常简单了,让我们看看最重要的内容如下
if (initcall_debug)
ret = do_one_initcall_debug(fn);
else
ret = fn();
这里就是判断是不是debug模式,无非debug会多一些调试的操作。但是不管是哪一种,他们都执行 ret = fn( );
因为fn就是函数指针,fn指向的是我们注册到__initcall0_start ... __initcall7_start的一系列函数。所以 fn( ); 就是调用这些函数。当然也包括了驱动中module_init注册的函数啦,只是通过module_init注册的level等级是6,for循环是从level = 0开始的,这也能看出0是优先级最高,7是优先级最低的。
到现在,module_init的作用已经全部分析完毕~
---------------------
作者:Richard_LiuJH
来源:CSDN
原文:https://blog.csdn.net/richard_liujh/article/details/46758073
版权声明:本文为博主原创文章,转载请附上博文链接!
Linux内核很吊之 module_init解析 (下)【转】的更多相关文章
- linux内核分析笔记----上半部与下半部(下)
接着上节的来,我们在上节说了软中断和tasklet,那这最后就是工作队列了哦.. 工作队列和前面讨论的其他形式都不相同,它可以把工作推后,交由一个内核线程去执行----该工作总是会在进程上下文执行.这 ...
- linux内核头文件 cdev.h 解析
遇到一个内核API--cdev_init 就找到这里来了. #ifndef _LINUX_CDEV_H #define _LINUX_CDEV_H #include <linux/kobject ...
- linux内核中的wait_event_interruptible_timeout接口解析
1. 原型 #define wait_event_interruptible_timeout(wq_head, condition, timeout) \ ({ \ long __ret = time ...
- linux驱动 之 module_init解析 (上)【转】
转自:https://blog.csdn.net/Richard_LiuJH/article/details/45669207 版权声明:本文为博主原创文章,未经博主允许不得转载. https://b ...
- 基于tiny4412的Linux内核移植 --- aliases节点解析
作者信息 作者: 彭东林 邮箱:pengdonglin137@163.com QQ:405728433 平台简介 开发板:tiny4412ADK + S700 + 4GB Flash 要移植的内核版本 ...
- ubuntu下linux内核源码阅读工具和调试方法总结
http://blog.chinaunix.net/uid-20940095-id-66148.html 一 linux内核源码阅读工具 windows下当然首选source insight, 但是l ...
- 基于tiny4412的Linux内核移植 --- aliases节点解析【转】
转自:https://www.cnblogs.com/pengdonglin137/p/5252348.html 阅读目录(Content) 作者信息 平台简介 正文 回到顶部(go to top) ...
- Linux内核调试方法总结
Linux内核调试方法总结 一 调试前的准备 二 内核中的bug 三 内核调试配置选项 1 内核配置 2 调试原子操作 四 引发bug并打印信息 1 BUG()和BUG_ON() 2 ...
- Linux内核调试方法【转】
转自:http://www.cnblogs.com/shineshqw/articles/2359114.html kdb:只能在汇编代码级进行调试: 优点是不需要两台机器进行调试. gdb:在调试模 ...
随机推荐
- jQuery_parent() parents() closest()区别
parent 是找当前元素的第一个父节点,不管匹不匹配都不继续往下找 parents 是找当前元素的所有父节点 closest 是找当前元素的所有父节点 ,直到找到第一个匹配的父节点 <%@ ...
- jenkins 基本配置
修改jenkins使用用户和启动端口 //yum 安装 cat /etc/sysconfig/jenkins 安装完后安装maven插件 设置jenkins项目存放目录 系统管理---->系统设 ...
- MyBatis-Configuration
一.引用 properties 配置文件 db.properties driver=com.mysql.cj.jdbc.Driver url=jdbc:mysql://192.168.8.136:33 ...
- typeahead使用ajax补全输入框的方法
最近想使用一个输入框补全的功能,bootstrap有,但是官方手册太简单,搞了好几天,终于弄好了. 官方使用的方法是/<input type="text" data-prov ...
- 017、RUN、CMD、ENTRYPOINT (2019-01-08 周二)
参考https://www.cnblogs.com/CloudMan6/p/6875834.html RUN CMD ENTRYPOINT 这三个Dockerfile指令看上去很类似,很容易混淆. ...
- JS获得元素相对位置坐标getBoundingClientRect()
getBoundingClientRect用于获取某个元素相对于视窗的位置集合.集合中有top, right, bottom, left等属性. 1.语法:这个方法没有参数. rectObject = ...
- SpringBoot入门笔记(四)、通常Mybatis项目目录结构
1.工程启动类(AppConfig.java) 2.实体类(domain) 3.数据访问层(dao) 4.数据服务层(service) 5.前端控制器(controller) 6.工具类(util) ...
- 【二】JConsole、VisualVM
监控工具 jconsole.exe 只有10几k,真正的代码是包装在tools.jar中. 双击[本地线程]:sun.tools.jconsole.JConsole: 内存的线在上下起伏,证明是[垃圾 ...
- python3.x与2.x区别
1.性能 Py3.0运行 pystone benchmark的速度比Py2.5慢30%.Guido认为Py3.0有极大的优化空间,在字符串和整形操作上可 以取得很好的优化结果. Py3.1性能比Py2 ...
- python中执行py文件出错(提示File “<stdin>”,line 1,SyntaxError:invalid syntax)
解决办法: 上图中已通过输入python进入了python运行环境,出现>>>时候的不能再用python z.py 来运行hello.py文件: 应该通过exit()退出当前pyth ...