之前写过一遍关于学习surf算法的blog:http://blog.csdn.net/sangni007/article/details/7482960

但是代码比较麻烦,而且其中还涉及到flann算法(其中的Random KDTree+KNN),虽然能看明白,但是比较费劲,今天在文档中找到一个简化版本:

1.SurfFeatureDetector detector( minHessian );构造surf检测器;

detector.detect( img_1, keypoints_1 ); detector.detect( img_2, keypoints_2 );检测

2.SurfDescriptorExtractor extractor;提取描述结构

Mat descriptors_1, descriptors_2;

extractor.compute( img_1, keypoints_1, descriptors_1 ); extractor.compute( img_2, keypoints_2, descriptors_2 );

3.BruteForceMatcher< L2<float> > matcher;牛逼的匹配结构啊!!!!可以直接暴力测量距离

std::vector< DMatch > matches;

matcher.match( descriptors_1, descriptors_2, matches );

文档:http://opencv.itseez.com/modules/gpu/doc/feature_detection_and_description.html?highlight=bruteforce#gpu::BruteForceMatcher_GPU

PS:OpenCV 你是在太强悍了!!!只有我想不到,木有你办不到的啊! 我真心跪了!

  1. /**
  2. * @file SURF_descriptor
  3. * @brief SURF detector + descritpor + BruteForce Matcher + drawing matches with OpenCV functions
  4. * @author A. Huaman
  5. */
  6. #include <stdio.h>
  7. #include <iostream>
  8. #include "opencv2/core/core.hpp"
  9. #include "opencv2/features2d/features2d.hpp"
  10. #include "opencv2/highgui/highgui.hpp"
  11. using namespace cv;
  12. using namespace std;
  13. void readme();
  14. /**
  15. * @function main
  16. * @brief Main function
  17. */
  18. int main( int argc, char** argv )
  19. {
  20. //if( argc != 3 )
  21. //{ return -1; }
  22. Mat img_1 = imread( "D:/src.jpg", CV_LOAD_IMAGE_GRAYSCALE );
  23. Mat img_2 = imread( "D:/Demo.jpg", CV_LOAD_IMAGE_GRAYSCALE );
  24. if( !img_1.data || !img_2.data )
  25. { return -1; }
  26. //-- Step 1: Detect the keypoints using SURF Detector
  27. int minHessian = 400;
  28. double t=getTickCount();
  29. SurfFeatureDetector detector( minHessian );
  30. std::vector<KeyPoint> keypoints_1, keypoints_2;
  31. detector.detect( img_1, keypoints_1 );
  32. detector.detect( img_2, keypoints_2 );
  33. //-- Step 2: Calculate descriptors (feature vectors)
  34. SurfDescriptorExtractor extractor;
  35. Mat descriptors_1, descriptors_2;
  36. extractor.compute( img_1, keypoints_1, descriptors_1 );
  37. extractor.compute( img_2, keypoints_2, descriptors_2 );
  38. //-- Step 3: Matching descriptor vectors with a brute force matcher
  39. BruteForceMatcher< L2<float> > matcher;
  40. std::vector< DMatch > matches;
  41. matcher.match( descriptors_1, descriptors_2, matches );
  42. t=getTickCount()-t;
  43. t=t*1000/getTickFrequency();
  44. //-- Draw matches
  45. Mat img_matches;
  46. drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches );
  47. cout<<"Cost Time:"<<t<<endl;
  48. //-- Show detected matches
  49. imshow("Matches", img_matches );
  50. waitKey(0);
  51. return 0;
  52. }
  53. /**
  54. * @function readme
  55. */
  56. void readme()
  57. { std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }

图像中match的keypoints没有经过过滤。导致匹配点过多

文档地址:http://opencv.itseez.com/doc/tutorials/features2d/feature_description/feature_description.html?highlight=description

文档中还有一个版本带定位的和过滤Match的,

http://opencv.itseez.com/doc/tutorials/features2d/feature_homography/feature_homography.html?highlight=drawmatchesflags

from: http://blog.csdn.net/yangtrees/article/details/7544133

学习OpenCV——Surf简化版的更多相关文章

  1. 学习OpenCV——ORB简化版&Location加速版

    根据前面surf简化版的结构,重新把ORB检测的代码给简化以下,发现虽然速度一样,确实能省好多行代码,关键是有 BruteForceMatcher<HammingLUT>matcher的帮 ...

  2. 学习OpenCV——Surf(特征点篇)&flann

    Surf(Speed Up Robust Feature) Surf算法的原理                                                             ...

  3. 特征点检测学习_2(surf算法)

    依旧转载自作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 特征点检测学习_2(surf算法) 在上篇博客特征点检测学习_1(sift算法) 中 ...

  4. 学习opencv之路(一)

    先看一下<学习opencv> 找几个demo 学会相机标定 我做的是单目相机的标定.

  5. [纯小白学习OpenCV系列]官方例程00:世界观与方法论

    2015-11-11 ----------------------------------------------------------------------------------- 其实,写博 ...

  6. 《学习OpenCV》中求给定点位置公式

    假设有10个三维的点,使用数组存放它们有四种常见的形式: ①一个二维数组,数组的类型是CV32FC1,有n行,3列(n×3) ②类似①,也可以用一个3行n列(3×n)的二维数组 ③④用一个n行1列(n ...

  7. 对人脑处理视觉的描述(摘《学习OpenCV(中文版)》)

    人脑将视觉信号划分入很多个通道,将各种不同的信息输入你的大脑.你的大脑有一个关注系统,会根据任务识别出图像的重要部分,并做重点分析,而其他部分则分析得较少 .在人类视觉流中存在大量的反馈,但是目前我们 ...

  8. 《学习OpenCV》练习题第五章第二题abc

    代码: #include <stdio.h> #include <opencv/highgui.h> #include <opencv/cv.h> #include ...

  9. 《学习OpenCV》练习题第五章第一题ab

    这道题是载入一幅带有有趣纹理的图像并用不同的模板(窗口,核)大小做高斯模糊(高斯平滑),然后比较用5*5大小的窗口平滑图像两次和用11*11大小的窗口平滑图像一次是否接近相同. 先说下我的做法,a部分 ...

随机推荐

  1. Flex——Array,ArrayCollection,Vector性能比较(转)

    测试方法 private function Test():void { ;j<;j++) { trace("插入10000项============"); var t1:in ...

  2. python成长之路——第一天

    一.python版本间的差异: 1.1:2.x与3.x版本对比 version 2.x 3.x print print " "或者print()打印都可以正常输出 只能print( ...

  3. Node.js 手册查询-3-Mongoose 方法

    Mongoose 参考手册 标签(空格分隔): MongoDB Mongoose 是什么? 一般我们不直接用MongoDB的函数来操作MongoDB数据库 Mongose就是一套操作MongoDB数据 ...

  4. 用c#实现$.now()(1437813924915)的时间效果

    Convert.ToInt64((DateTime.UtcNow - Convert.ToDateTime("1970-01-01")).TotalMilliseconds)

  5. C# async

    I/O should use async, asynchronous method can be achieved: message, delegate, multi-threading Thread ...

  6. width,clientWidth,offsetWidth

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  7. spring注解实现AOP

    项目结构图

  8. springmvc源码分析

    Spring MVC源码分析--初始化过程 标签: springmvcconstructioniocclass 2012-09-09 21:32 26578人阅读 评论(3) 收藏 举报 版权声明:本 ...

  9. 20145334赵文豪 《Java程序设计》第4周学习总结

    20145334赵文豪 <Java程序设计>第4周学习总结 教材学习内容总结 第六章知识点总结 1-继承共同行为:如果在程序设计上存在着重复,那就需要修改,可以吧相同的程序代码提升(pul ...

  10. IOS网络第一天-01基本的HTTP请求

    *************************** #import "HMViewController.h" #import "MBProgressHUD+MJ.h& ...