solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为

# caffe train --solver=*_slover.prototxt

在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。

到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

  • Stochastic Gradient Descent (type: "SGD"),
  • AdaDelta (type: "AdaDelta"),
  • Adaptive Gradient (type: "AdaGrad"),
  • Adam (type: "Adam"),
  • Nesterov’s Accelerated Gradient (type: "Nesterov") and
  • RMSprop (type: "RMSProp")

具体的每种方法的介绍,请看本系列的下一篇文章, 本文着重介绍solver配置文件的编写。

Solver的流程:

1.     设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)

2.     通过forward和backward迭代的进行优化来跟新参数。

3.     定期的评价测试网络。 (可设定多少次训练后,进行一次测试)

4.     在优化过程中显示模型和solver的状态

在每一次的迭代过程中,solver做了这几步工作:

1、调用forward算法来计算最终的输出值,以及对应的loss

2、调用backward算法来计算每层的梯度

3、根据选用的slover方法,利用梯度进行参数更新

4、记录并保存每次迭代的学习率、快照,以及对应的状态。

接下来,我们先来看一个实例:

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 20000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU

接下来,我们对每一行进行详细解译:

net: "examples/mnist/lenet_train_test.prototxt"

设置深度网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。每一个layer的具体配置方式可参考本系列文文章中的(2)-(5)。注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。

也可用train_net和test_net来对训练模型和测试模型分别设定。例如:

train_net: "examples/hdf5_classification/logreg_auto_train.prototxt"
test_net: "examples/hdf5_classification/logreg_auto_test.prototxt"

接下来第二行:

test_iter: 100

这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch

test_interval: 500

测试间隔。也就是每训练500次,才进行一次测试。

base_lr: 0.01
lr_policy: "inv"
gamma: 0.0001
power: 0.75

这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。

lr_policy可以设置为下面这些值,相应的学习率的计算为:

    • - fixed:   保持base_lr不变.
    • - step:    如果设置为step,则还需要设置一个stepsize,  返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
    • - exp:     返回base_lr * gamma ^ iter, iter为当前迭代次数
    • - inv:      如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
    • - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据                                 stepvalue值变化
    • - poly:     学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
    • - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))

multistep示例:

base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "multistep"
gamma: 0.9
stepvalue: 5000
stepvalue: 7000
stepvalue: 8000
stepvalue: 9000
stepvalue: 9500

接下来的参数:

momentum :0.9

上一次梯度更新的权重,具体可参看下一篇文章。

type: SGD

优化算法选择。这一行可以省掉,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。

weight_decay: 0.0005

权重衰减项,防止过拟合的一个参数。

display: 100

每训练100次,在屏幕上显示一次。如果设置为0,则不显示。

max_iter: 20000

最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。

snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"

快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存。snapshot_prefix设置保存路径。

还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。

也可以设置snapshot_format,保存的类型。有两种选择:HDF5 和BINARYPROTO ,默认为BINARYPROTO

solver_mode: CPU

设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

注意:以上的所有参数都是可选参数,都有默认值。根据solver方法(type)的不同,还有一些其它的参数,在此不一一列举。

Caffe学习系列(7):solver及其配置的更多相关文章

  1. Caffe学习系列(1):安装配置ubuntu14.04+cuda7.5+caffe+cudnn

    一.版本 linux系统:Ubuntu 14.04 (64位) 显卡:Nvidia K20c cuda: cuda_7.5.18_linux.run cudnn: cudnn-7.0-linux-x6 ...

  2. Caffe 学习系列

    学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...

  3. Caffe学习系列(21):caffe图形化操作工具digits的安装与运行

    经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http:/ ...

  4. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  5. 转 Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  6. Caffe学习系列(12):训练和测试自己的图片--linux平台

    Caffe学习系列(12):训练和测试自己的图片   学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...

  7. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  8. Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  9. 转 Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  10. Caffe学习系列(22):caffe图形化操作工具digits运行实例

    上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...

随机推荐

  1. 初识mvc分层思想

    首先要清楚的是: mvc是一种设计模式,一种分层思想,没有具体的技术与之对应,无论是js还是java或者其他的技术都可以运用. 既然是分层那么这些层都有哪些职责呢? View层(界面层): 为用户展示 ...

  2. C#中去掉表中重复的数据

    /// <summary> /// 去掉表中重复的数据  int /// </summary> /// <param name="SourceTable&quo ...

  3. Spring boot 基于Spring MVC的Web应用和REST服务开发

    Spring Boot利用JavaConfig配置模式以及"约定优于配置"理念,极大简化了基于Spring MVC的Web应用和REST服务开发. Servlet: package ...

  4. 关于SUID、SGID、Sticky

    SUID属性 passwd命令可以用于更改用户的密码,一般用户可以使用这个命令修改自己的密码.但是保存用户密码的/etc/shadow文件的权限是400,也就是说只有文件的所有者root用户可以写入, ...

  5. For循环案例---九九乘法表

    概述:先创建一个Print99类,类中创建5个方法,分别为Test9901.Test9902.Test9903.Test9904.Test9905,分别打印出不同形状的九九乘法表,该类创建完成后再创建 ...

  6. C++11 之 scoped enum

      C++11 枚举类型是“域化的” (scoped enum),相比 C++98 枚举类型的“非域化” (unscoped enum),具有如下优点: 1  命名空间污染  一般来说,声明在花括号内 ...

  7. POJ3260The Fewest Coins[背包]

    The Fewest Coins Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6299   Accepted: 1922 ...

  8. python pyperclip模块的使用

    用途: 复制,粘贴 用法: >>> import pyperclip >>> pyperclip.copy('Hello world!') >>> ...

  9. Unity减少GC Alloc之 使用for替换foreach

    Unity中foreach会增加GC unity中for效率比foreach高? 在unity中使用foreach遍历集合会增加gc alloc,参考的话题:作为Unity3D的脚本而言,c#中for ...

  10. arr的高级用法

    arr的高级用法 reduce 方法(升序) 语法: array1.reduce(callbackfn[, initialValue]) 参数 定义 array1 必需.一个数组对象. callbac ...