线性筛积性函数$g(x)$,具体看Yveh的题解:

http://sr16.com:8081/%e3%80%90bzoj2820%e3%80%91yy%e7%9a%84gcd/

#include<cstdio>
#include<cstring>
#include<algorithm>
#define read(x) x=getint()
using namespace std;
const int N = 1E7 + 3;
int getint() {
int k = 0, fh = 1; char c = getchar();
for(; c < '0' || c > '9'; c = getchar())
if (c == '-') fh = -1;
for(; c >= '0' && c <= '9'; c = getchar())
k = k * 10 + c - '0';
return k * fh;
}
bool np[N];
int g[N], mu[N], prime[N], sum[N];
void shai() {
memset(np, 0, sizeof(np));
mu[1] = 1; g[1] = 0; sum[1] = 0; int num = 0;
for(int i = 2; i <= 1E7; ++i) {
if (!np[i]) {prime[++num] = i; mu[i] = - 1; g[i] = 1;}
for(int j = 1; j <= num; ++j) {
if (prime[j] * i > 1E7) break;
np[prime[j] * i] = 1;
if (i % prime[j] == 0) {
mu[prime[j] * i] = 0;
g[prime[j] * i] = mu[i];
break;
}
mu[prime[j] * i] = - mu[i];
g[prime[j] * i] = mu[i] - g[i];
}
sum[i] = sum[i - 1] + g[i];
}
}
int main() {
shai();
long long ret;
int t, n, m;
read(t);
while (t--) {
read(n); read(m);
if (n > m) swap(n, m);
ret = 0;
for(int i = 1, la = 1; i <= n; i = la + 1) {
la = min(n / (n / i), m / (m / i));
ret += (long long) (sum[la] - sum[i - 1]) * (n / i) * (m / i);
}
printf("%lld\n", ret);
}
return 0;
}

我确实弱==

【BZOJ 2820】YY的GCD的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  2. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  3. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  4. 【刷题】BZOJ 2820 YY的GCD

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...

  5. Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)

    2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

  6. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  7. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  8. BZOJ 2820 YY的GCD(莫比乌斯函数)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2820 题意:给定n,m.求1<=x<=n, 1<=y<=m且Gc ...

  9. bzoj 2820 YY的GCD(莫比乌斯反演)

    Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻× ...

  10. ●BZOJ 2820 YY的GCD

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题解: 莫比乌斯反演 先看看这个题:HDU 1695 GCD(本题简化版) HDU 1 ...

随机推荐

  1. STL vector

    STL vector vector是线性容器,它的元素严格的按照线性序列排序,和动态数组很相似,和数组一样,它的元素存储在一块连续的存储空间中,这也意味着我们不仅可以使用迭代器(iterator)访问 ...

  2. java分层开发

    既然是分层开发,首先我们需要知道的是分为那几个层,并且是干什么的? 1.实体层(entity) 对应数据库中的一张表,有了它可以降低耦合性,同时也是数据的载体. 2.数据访问对象(data acces ...

  3. cookie 和 session 的基础知识

    cookie 和 session 的基础知识 cookie 和session 的区别详解 这些都是基础知识,不过有必要做深入了解.先简单介绍一下. 二者的定义: 当你在浏览网站的时候,WEB 服务器会 ...

  4. 读取另一个项目中方法的json

    A项目中的被调用方法: public class Eg1Action { public void save(){        write("{\"state\":1,\ ...

  5. [No00000A]计算机的存储单位

    位 bit (比特)(Binary Digits):存放一位二进制数,即 0 或 1,最小的存储单位. 字节 byte:8个二进制[bit (比特)(Binary Digits)]位为一个字节(B), ...

  6. varnish 的一个配置

    backend default { .host = "10.32.26.31"; .port = "; } sub vcl_recv { if (req.url ~ &q ...

  7. 高端黑链SEO—恶意JS脚本注入访问伪随机域名

    摘要:我们的服务器又出入侵事故了.有客户的 html 网页底部被插入了一段 js 脚本,导致访客打开网页时被杀毒软件警告网站上有恶意代码.在黑链 SEO 中这是常见的手法,但奇特的地方就在于我们这次捕 ...

  8. CodeDom

    细说CodeDom 在上一篇文章中,老周厚着脸皮给大伙介绍了代码文档的基本结构,以及一些代码对象与CodeDom类型的对应关系. 在评论中老周看到有朋友提到了 Emit,那老周就顺便提一下.严格上说, ...

  9. 1003. Emergency

    As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...

  10. [转]git fetch 的简单用法:更新远程代码到本地仓库

    [原文地址]:http://my.eoe.cn/com360/archive/3533.html Git中从远程的分支获取最新的版本到本地方式如下,如何更新下载到代码到本地,请参阅ice的博客基于Gi ...