本文简要介绍了Newton-Raphson方法及其R语言实现并给出几道练习题供参考使用。 下载PDF格式文档(Academia.edu)

  • Newton-Raphson Method
    Let $f(x)$ be a differentiable function and let $a_0$ be a guess for a solution to the equation $$f(x)=0$$ We can product a sequence of points $x=a_0, a_1, a_2, \dots $ via the recursive formula $$a_{n+1}=a_n-\frac{f(a_n)}{f'(a_n)}$$ that are successively better approximation of a solution to the equation $f(x)=0$.
  • R codes

    There are 4 parameters in this function:

    • f is the function you input.
    • tol is the tolerance (default $1e-7$).
    • x0 is the initial guess.
    • N is the default number (100) of iterations.

    The process will be end up until either the absolute difference between two adjacent approximations is less than tol, or the number of iterations reaches N.

  • Examples
    Generally speaking, the "guess" is important. More precisely, according to Intermediate Value Theorem we can find two values of which function value are larger and less than 0, respectively. Then choosing the one, which first derivative is larger than another, as the initial guess value in the iterative formula. This process will guarantee the convergence of roots. Let's see some examples.
    • Example 1
      Approximate the fifth root of 7.
      Solution:
      Denote $f(x)=x^5-7$. It is easily to know that $f(1)=-6 < 0$ and $f(2)=25 > 0$. Additionally, $f'(1)=5 < f'(2)=80$, so we set the initial guess value $x_0=2$. By Newton-Raphson method we get the result is 1.47577316159. And $$f(1.47577316159)\approx 1.7763568394e-15$$ which is very close to 0. R codes is below:

      # Example 1
      f = function(x){x^5 - 7}
      h = 1e - 7
      df.dx = function(x){(f(x + h) - f(x)) / h}
      df.dx(1); df.dx(2)
      # [1] 5.0000009999
      # [1] 80.0000078272
      app = newton(f, x0 = 2)
      app
      # [1] 1.68750003057 1.52264459615 1.47857137506 1.47578373325 1.47577316175
      # [6] 1.47577316159
      f(app[length(app)])
      # [1] 1.7763568394e-15
    • Example 2
      The function $f(x)=x^5-5x^4+5x^2-6$ has a root between 1 and 5. Approximate it by Newton-Raphson method.
      Solution:
      We try to calculate some values first. $f(1)=-5, f(2)=-34, f(3)=-123, f(4)=-182, f(5)=119$, so there should be a root between 4 and 5. Since $f'(4)=40 < f'(5)=675$, hence $x_0=5$ is a proper initial guess value. By Newton-Raphson method we get the result is 4.79378454069 and $$f(4.79378454069)\approx -2.84217094304e-14$$ which is a desired approximation. R codes is below:
      # Example 2
      f = function(x){x^5 - 5 * x^4 + 5 * x^2 - 6}
      x = c(1 : 5)
      f(x)
      # [1] -5 -34 -123 -182 119
      h = 1e-7
      df.dx = function(x){(f(x + h) - f(x)) / h}
      df.dx(4); df.dx(5)
      # [1] 40.0000163836
      # [1] 675.000053008
      app = newton(f, x0 = 5)
      app
      # [1] 4.82370371755 4.79453028339 4.79378501861 4.79378454069 4.79378454069
      f(app[length(app)])
      # [1] -2.84217094304e-14
    • Example 3
      A rectangular piece of cardboard of dimensions $8\times 17$ is used to make an open-top box by cutting out a small square of side $x$ from each corner and bending up the sides. Find a value of $x$ for which the box has volume 100.
      Solution:
      Firstly, building the model. $V(x)=x(8-2x)(17-2x)=100$, that is, we want to find the root of equation $$f(x)=x(8-2x)(17-2x)-100=0\Leftrightarrow f(x)=4x^3-50x^2+136x-100=0$$ We know that $0 < x < 4$ and hence try to calculate some non-negative integers: $$f(0)=-100, f(1)=-10, f(2)=4, f(3)=-34, f(4)=-100$$ Note that there are two intervals may have roots: $(1, 2)\cup (2,3)$. Since $$f'(1)=48 > f'(2)=-16 > f'(3)=-56$$ so we set the initial guess values $x_0=1$ and $x'_0=2$ (i.e. there are two separate iteration procedures). By using Newton-Raphson method we obtain the result are 11.26063715644 and 2.19191572127 respectively. Both of them are quite accurate. R codes is below:
      # Example 3
      f = function(x){4 * x^3 - 50 * x^2 + 136 * x - 100}
      x = c(0 : 4)
      f(x)
      # [1] -100 -10 4 -34 -100
      h = 1e-7
      df.dx = function(x){(f(x + h) - f(x)) / h}
      df.dx(1); df.dx(2); df.dx(3)
      # [1] 47.9999962977
      # [1] -16.0000024607
      # [1] -56.0000012229
      app1 = newton(f, x0 = 1)
      app2 = newton(f, x0 = 2)
      app1; app2
      # [1] 1.20833334940 1.25768359879 1.26062673622 1.26063715631 1.26063715644
      # [1] 2.24999996155 2.19469026652 2.19192282154 2.19191572132 2.19191572127
      f(app1[length(app1)]); f(app2[length(app2)])
      # [1] 2.84217094304e-14
      # [1] -2.84217094304e-14

Newton-Raphson算法简介及其R实现的更多相关文章

  1. 分类算法简介 基于R

    最近的关键字:分类算法,outlier detection, machine learning 简介: 此文将 k-means,decision tree,random forest,SVM(supp ...

  2. LARS 最小角回归算法简介

    最近开始看Elements of Statistical Learning, 今天的内容是线性模型(第三章..这本书东西非常多,不知道何年何月才能读完了),主要是在看变量选择.感觉变量选择这一块领域非 ...

  3. webrtc 的回声抵消(aec、aecm)算法简介(转)

    webrtc 的回声抵消(aec.aecm)算法简介        webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS(归一化最小均方自适应算法) ...

  4. AES算法简介

    AES算法简介 一. AES的结构 1.总体结构 明文分组的长度为128位即16字节,密钥长度可以为16,24或者32字节(128,192,256位).根据密钥的长度,算法被称为AES-128,AES ...

  5. 排列熵算法简介及c#实现

    一.   排列熵算法简介: 排列熵算法(Permutation Entroy)为度量时间序列复杂性的一种方法,算法描述如下: 设一维时间序列: 采用相空间重构延迟坐标法对X中任一元素x(i)进行相空间 ...

  6. <算法图解>读书笔记:第1章 算法简介

    阅读书籍:[美]Aditya Bhargava◎著 袁国忠◎译.人民邮电出版社.<算法图解> 第1章 算法简介 1.2 二分查找 一般而言,对于包含n个元素的列表,用二分查找最多需要\(l ...

  7. AI - 机器学习常见算法简介(Common Algorithms)

    机器学习常见算法简介 - 原文链接:http://usblogs.pwc.com/emerging-technology/machine-learning-methods-infographic/ 应 ...

  8. STL所有算法简介 (转) http://www.cnblogs.com/yuehui/archive/2012/06/19/2554300.html

    STL所有算法简介 STL中的所有算法(70个) 参考自:http://www.cppblog.com/mzty/archive/2007/03/14/19819.htmlhttp://hi.baid ...

  9. PageRank 算法简介

    有两篇文章一篇讲解(下面copy)< PageRank算法简介及Map-Reduce实现>来源:http://www.cnblogs.com/fengfenggirl/p/pagerank ...

随机推荐

  1. 强迫症的福利——我的第一个VS插件,对using排序!

    首先来看看VS自带的using整理功能: 长短不一,看着让人生厌!这是哪个门子的整理?越来越乱了好吗! 难道就没有一款,由短到长——金字塔搬的排序方案吗? 于是各种百度: “VS 插件 using排序 ...

  2. web性能优化——浏览器相关

    简介 优化是一个持续的过程.所以尽可能的不要有人为的参与.所以能自动化的或者能从架构.框架级别解决的就最更高级别解决. 这样即能实现面对开发人员是透明的.不响应,又能确保所有资源都是被优化过的. 场景 ...

  3. OS存储器管理(一)

    存储器的层次: 分为寄存器.主存(内存)和 辅存(外存)三个层次. 主存:高速缓冲存储器.主存储器.磁盘缓冲存储器, 主存又称为可执行存储器: 辅存:固定磁盘存储器.可移动的外部存储器: 其可长期保存 ...

  4. [转]acm忠告

    多做难题 如果你去问那些牛人“这道题你是怎么想到要用XXX方法的”,我估计大部分人都说不出个所以然来.其实很多情况下都是纯凭直觉考虑到的数个思维方向,这种直觉是需要大量的练习来得到的,没有那么多“为什 ...

  5. 安装Ubuntu之后

    一.Ubuntu is better than fedora I used to use Utuntu 14.04,it's a LTS(long term support) edition. I d ...

  6. Rootkit Hunter恶意程序查杀

    恶意程序,恶意代码检测 下载:https://pkgs.org/search/rkhunter 安装:rpm -ivh rkunter* Installed: #需要先安装  lsof.x86_64 ...

  7. Python基础-列表_元组_字典_集合

    本节内容 列表.元组操作 字符串操作 字典操作 集合操作 文件操作 字符编码与转码 1. 列表.元组操作 列表是我们最以后最常用的数据类型之一,通过列表可以对数据实现最方便的存储.修改等操作 定义列表 ...

  8. 1110MySQL select实现原理

    转自http://www.jianshu.com/p/NsWbRv 工作中需要借鉴MySQL对于select的具体实现,在网上搜了很久,几乎都是介绍原理的,对于实现细节都没有介绍,无奈之下只得自己对着 ...

  9. Learning jQuery, 4th Edition 勘误表

    来源于:http://book.learningjquery.com/3145/errata/ Chapter 1 page 14 The CSS snippet is correct, but it ...

  10. nginx配置实战1----配置虚拟主机

    1 nginx虚拟主机的概念 虚拟主机是在网络服务器上划分出一定的磁盘空间供用户放置站点.应用组件等,提供必要的站点功能.数据存放和传输功能,所谓虚拟主机,也叫"网站空间",就是把 ...