【BZOJ-3996】线性代数 最小割-最大流
3996: [TJOI2015]线性代数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1054 Solved: 684
[Submit][Status][Discuss]
Description
给出一个N*N的矩阵B和一个1*N的矩阵C。求出一个1*N的01矩阵A.使得
Input
Output
输出最大的D
Sample Input
1 2 1
3 1 0
1 2 3
2 3 7
Sample Output
HINT
1<=N<=500
Source
Solution
首先来化简一下题目中的式子:
设$E=A*B$,很显然E为一个1×N的矩阵,那么有$E_{1,j}=\sum_{i=1}^{N}A_{1,i}B_{i,j}$
那么$A*B-C$就可以化成$F_{1,j}=\sum_{i=1}^{N}A_{1,i}B_{i,j}-C_{1,j}$
那么进一步化简$D_{1,1}=\sum_{j=1}^{N}\left ( \left ( \sum_{i=1}^{N}A_{1,i}B_{i,j}-C_{1,j} \right )*A'_{j,1} \right )$
最后化成:$D=\sum_{i=1}^{N}\sum_{j=1}^{N}A_{i}A_{j}B_{i,j}-\sum_{i=1}^{N}A_{i}C_{i}$
那么从式子的角度去思考建图由于$A$是一个0/1矩阵,不妨把$A$看做“选”或“不选”,那么$B_{i,j}$看做同时选$i$和$j$两个物品的收益,$C_{i}$可以看做选第$i$个物品的代价。
也就是说选$B_{i,j}$必须选$C_{i},C_{j}$
最大权闭合子图.....
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-')f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 300010
#define maxm 3000010
int N,tot,ans;
struct Edgenode{int to,next,cap;}edge[maxm];
int head[maxn],cnt=;
void add(int u,int v,int w)
{cnt++;edge[cnt].to=v;edge[cnt].cap=w;edge[cnt].next=head[u];head[u]=cnt;}
void insert(int u,int v,int w)
{add(u,v,w);add(v,u,);}
//
#define inf 0x7fffffff
int dis[maxn],q[maxn<<],cur[maxn],S,T;
bool bfs()
{
for (int i=S; i<=T; i++) dis[i]=-;
q[]=S; int he=,ta=;
while (he<ta)
{
int now=q[he++];
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==-)
dis[edge[i].to]=dis[now]+,q[ta++]=edge[i].to;
}
return dis[T]!=-;
}
int dfs(int loc,int low)
{
if (loc==T) return low;
int w,used=;
for (int i=cur[loc]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==dis[loc]+)
{
w=dfs(edge[i].to,min(low-used,edge[i].cap));
edge[i].cap-=w; edge[i^].cap+=w;
used+=w; if (edge[i].cap) cur[loc]=i;
if (used==low) return low;
}
if (!used) dis[loc]=-;
return used;
}
int dinic()
{
int tmp=;
while (bfs())
{
for (int i=S; i<=T; i++) cur[i]=head[i];
tmp+=dfs(S,inf);
}
return tmp;
}
//
int main()
{
N=read(); S=,T=N+N*N+;
for (int i=; i<=N; i++)
for (int x,j=; j<=N; j++)
x=read(),tot+=x,insert((i-)*N+j+N,T,x),
insert(i,(i-)*N+j+N,inf),insert(j,(i-)*N+j+N,inf);
for (int x,i=; i<=N; i++)
x=read(),insert(S,i,x);
ans=dinic();
printf("%d\n",tot-ans);
return ;
}
正解被喝水路过的ShallWe直接秒....不然我还没往最小割模型上靠...
【BZOJ-3996】线性代数 最小割-最大流的更多相关文章
- BZOJ 3996 线性代数 最小割
题意: 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 分析: 这道题比较绕,我们需要看清题目中那个式子的本 ...
- hdu4289 最小割最大流 (拆点最大流)
最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...
- 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1685 Solved: 724[Submit] ...
- BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...
- hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)
/** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...
- BZOJ1001:狼抓兔子(最小割最大流+vector模板)
1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...
- HDU1565 方格取数(1) —— 状压DP or 插头DP(轮廓线更新) or 二分图点带权最大独立集(最小割最大流)
题目链接:https://vjudge.net/problem/HDU-1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- 最小割最大流定理&残量网络的性质
最小割最大流定理的内容: 对于一个网络流图 $G=(V,E)$,其中有源点和汇点,那么下面三个条件是等价的: 流$f$是图$G$的最大流 残量网络$G_f$不存在增广路 对于$G$的某一个割$(S,T ...
- Destroying The Graph 最小点权集--最小割--最大流
Destroying The Graph 构图思路: 1.将所有顶点v拆成两个点, v1,v2 2.源点S与v1连边,容量为 W- 3.v2与汇点连边,容量为 W+ 4.对图中原边( a, b ), ...
随机推荐
- 个人PHP开发环境的选择与搭建
入职一个多月,重新调整了一下自己电脑的开发环境,现在写出来,算是作为自己的笔记. 如果你是该文章的读者,请忍受文章内的所有小章节都没有具体的步骤. 因为平时还要打游戏(划掉),所以电脑系统一直是Win ...
- usb驱动开发16之设备生命线
回到struct usb_hcd,继续努力的往下看. kref,usb主机控制器的引用计数.struct usb_hcd也有自己专用的引用计数函数,看hcd.c文件. static void hcd_ ...
- maven spring profile 协同
请在网上查相关的使用情景,这里直接上要点.另外,可能不只一种方法,但这里只有一种. 1.POM.XML片段,使web.xml文件中有关活跃spring profile的内容可以被maven自动替换 & ...
- 硬盘安装win2003
1.将安装文件放到D盘或E盘,自己指定 2.用U盘或者光盘启动,进入DOS或WINPE吧,转到刚才指定的目录下,运行 winnt32 /syspart:c/marklocalsource/tempdr ...
- noi1696 逆波兰表达式
1696:逆波兰表达式 http://noi.openjudge.cn/ch0303/1696/ 总时间限制: 1000ms 内存限制: 65536kB 描述 逆波兰表达式是一种把运算符前置的算术 ...
- sobel算子
#1,个人理解 网上查了很多资料,都说sobel算子是用来检测边缘的,分别给了两个方向上的卷积核,然后说明做法,就说这就是sobel算子.对于我个人来说,还有很多不明白的地方,所以理清下思路. #2, ...
- jboss eap 6.3 集群(cluster)配置
接上一篇继续,Domain模式解决了统一管理多台jboss的问题,今天我们来学习如何利用mod_cluster来实现负载均衡.容错. mod_cluster是jboss的一个开源集群模块(基于apac ...
- Spring 4.0.2 学习笔记(2) - 自动注入及properties文件的使用
接上一篇继续, 学习了基本的注入使用后,可能有人会跟我一样觉得有点不爽,Programmer的每个Field,至少要有一个setter,这样spring配置文件中才能用<property> ...
- 前端见微知著JavaScript基础篇:this or that ?
上节,我们提到了this关键字的问题,并且追加了一句很有意义的话:谁调用我,我指向谁.的确,在javascript中,在默认情况下,this会指向一个已经初始化的window对象.所以你不论有多少全局 ...
- 为什么Javascript中的基本类型能调用方法?
我们从一道笔试题说起: var str = 'string'; str.pro = 'hello'; console.log(str.pro + 'world'); 输出啥?要理解这个问题,我们得从头 ...