BZOJ 1142: [POI2009]Tab
1142: [POI2009]Tab
Time Limit: 40 Sec Memory Limit: 162 MB
Submit: 213 Solved: 80
[Submit][Status][Discuss]
Description
Input
Output
每组数据输出“TAK”/“NIE”表示能/不能.
Sample Input
4 3
1 2 3
4 5 6
7 8 9
10 11 12
11 10 12
8 7 9
5 4 6
2 1 3
2 2
1 2
3 4
5 6
7 8
Sample Output
NIE
HINT
Source
分析
对一个矩阵交换两行的时候,显然行内元素没有发生变化;而交换两列的时候,行内元素也只是变换了顺序而已。所以得出——不论对矩阵进行什么样的变换,原本在一行内的元素现在还在一行,原本在一列的元素现在还在一列。而对于两个矩阵,如果它们每行的元素相同,定能通过若干次对列的交换使得其行内元素顺序也相同;显然列也具有相同的性质。
由此得出,我们只需要分析两个矩阵的行列是否满足元素相同即可。当然,这个问题的做法不一,或排序,或哈希。因为题目满足元素大小在-1000000到1000000之间,且一个矩阵内不存在相同元素,所以不妨直接用数组记录每个元素在A矩阵中出现的位置。假如一个元素在A矩阵的(a,b)位置出现,在B矩阵的(c,d)位置出现,我们就认为A的a行和B的c行是匹配的,A的b列和B的d列是匹配的。如果出现了一行匹配两行,就是非法的。这样就能做到稳定的O(N*M + 1000000),显然可以过掉了。另外,最好加上读入优化,如果想上榜的话。
代码
#include <bits/stdc++.h> #define N 1005
#define M 1000000
#define K 2000005 int n, m;
int a[N][N];
int b[N][N];
int posX[K];
int posY[K];
int matchX[N];
int matchY[N]; signed main(void)
{
int cas; scanf("%d", &cas); while (cas--)
{
scanf("%d%d", &n, &m); for (int i = ; i <= n; ++i)
for (int j = ; j <= m; ++j)
scanf("%d", &a[i][j]), a[i][j] += M; for (int i = ; i <= n; ++i)
for (int j = ; j <= m; ++j)
scanf("%d", &b[i][j]), b[i][j] += M; memset(posX, , sizeof(posX));
memset(posY, , sizeof(posY)); for (int i = ; i <= n; ++i)
for (int j = ; j <= m; ++j)
posX[a[i][j]] = i, posY[a[i][j]] = j; bool answer = true; memset(matchX, , sizeof(matchX));
memset(matchY, , sizeof(matchY)); for (int i = ; i <= n; ++i)
for (int j = ; j <= m; ++j) {
const int v = b[i][j]; if (!posX[v])
{ answer = false; break; }
else if (matchX[i] && matchX[i] != posX[v])
{ answer = false; break; }
else matchX[i] = posX[v]; if (!posY[v])
{ answer = false; break; }
else if (matchY[j] && matchY[j] != posY[v])
{ answer = false; break; }
else matchY[j] = posY[v];
} puts(answer ? "TAK" : "NIE");
}
}
BZOJ_1142.cpp
@Author: YouSiki
BZOJ 1142: [POI2009]Tab的更多相关文章
- bzoj 1142 [POI2009]Tab 最小表示
[POI2009]Tab Time Limit: 40 Sec Memory Limit: 162 MBSubmit: 373 Solved: 167[Submit][Status][Discus ...
- [BZOJ 1135][POI2009]Lyz
[BZOJ 1135][POI2009]Lyz 题意 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的 ...
- BZOJ 1115: [POI2009]石子游戏Kam
1115: [POI2009]石子游戏Kam Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 883 Solved: 545[Submit][Stat ...
- bzoj 1133: [POI2009]Kon dp
1133: [POI2009]Kon Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 242 Solved: 81[Submit][Status][D ...
- bzoj 1138: [POI2009]Baj 最短回文路 dp优化
1138: [POI2009]Baj 最短回文路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 161 Solved: 48[Submit][Sta ...
- [BZOJ 1115] [POI2009] 石子游戏Kam 【阶梯博弈】
题目链接:BZOJ - 1115 题目分析 首先看一下阶梯博弈: 阶梯博弈是指:初始有 n 堆石子,每次可以从任意的第 i 堆拿若干石子放到第 i - 1 堆.最终不能操作的人失败. 解法:将奇数位的 ...
- BZOJ 1119: [POI2009]SLO [置换群]
传送门:现在$POI$上的题洛谷都有了,还要$BZOJ$干什么 和$cow\ sorting$一样,只不过问$a_i \rightarrow b_i$ 注意置换是位置而不是数值...也就是说要$i$的 ...
- BZOJ.1115.[POI2009]石子游戏Kam(阶梯博弈)
BZOJ 洛谷 \(Description\) 有\(n\)堆石子.除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作,每次可以从一堆石子中拿掉任意多的石子,但要保证操作后仍然满足初始时 ...
- bzoj 1115: [POI2009]石子游戏Kam -- 博弈论
1115: [POI2009]石子游戏Kam Time Limit: 10 Sec Memory Limit: 162 MB Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前 ...
随机推荐
- BZOJ 1588: [HNOI2002]营业额统计
1588: [HNOI2002]营业额统计 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 14396 Solved: 5521[Submit][Sta ...
- 【BZOJ 1001】[BeiJing2006]狼抓兔子
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个 ...
- 【MySql】存储过程添加事务
存储过程使用SQLException捕获SQL错误,然后处理: 我们可以在MySQL存储过程中捕获SQL错误,然后通过事务判断,回滚(ROLLBACK)还是提交(COMMIT). CREATE PRO ...
- pip安装包报错:Microsoft Visual C++ 9.0 is required Unable to find vcvarsall.bat
pip安装包报错:Microsoft Visual C++ 9.0 is required Unable to find vcvarsall.bat Windows7下pip安装包报错:Microso ...
- XMLHTTPRequest/Ajax请求 和普通请求的区别
Ajax请求头会多一个x-requested-with参数,值为XMLHttpRequest 详情:http://blog.csdn.net/zhangdaiscott/article/details ...
- Block Chain, a protocol view
我做了个区块链的文档,给自己扫盲用的,有兴趣的可以看下,主要是自己画示意图比较好理解,示意图之后的专题部分,内容直接取自参考链接.网上的资料都是谈区块链有什么性质.有什么能力.有什么应用之类的,我主要 ...
- ROS(Robot Operating System)常用环境变量介绍
本文简单介绍ROS系统中常用的环境变量用途及设置方式.ROS系统环境中除了必须配置的环境变量以外,其他的也是十分有用,通过修改变量路径,可以设置ROS系统中log文件存放路径,单元测试结果存放路径等. ...
- 在线音乐网站【03】Part one 功能实现
今天打算把网站功能的具体实现给总结一下,如果你想了解整个小项目,建议你先看看前面2篇博客. 1.在线音乐网站(1)需求和功能结构 2.在线音乐网站(2)数据库和开发环境 7.网站主要模块实现 a.在线 ...
- leetcode - 位运算题目汇总(上)
最近在看位运算的知识,十分感叹于位运算的博大精深,正好leetcode有 Bit Manipulation 的专题,正好拿来练练手. Subsets 给出一个由不同的数字组成的数组,枚举它的子数组(子 ...
- 在Windows上将ReactNative集成到现有的Android项目
React Natvie的官方文档的 Integrating with Existing Apps 已经很详细地教我们如何将React Natvie集成到现在的Android项目.我根据官方文档的步骤 ...