【BZOJ-2721】樱花 线性筛 + 数学
2721: [Violet 5]樱花
Time Limit: 5 Sec Memory Limit: 128 MB
Submit: 499 Solved: 293
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
Sample Output
HINT
Source
Solution
巧妙!
$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$ 令$z=n!$
则可以得到$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}=>x=\frac{yz}{y-z}$
再另$t=y-z$则可以得到$x=z+\frac{z^{2}}{t}$
所以我们求$n!^{2}$的约数,就是答案,这就利用到线筛
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define P 1000000007
#define LL long long
int N,cnt,prime[],z[],tmp;
bool flag[];
LL ans=1LL;
void Getprime()
{
flag[]=; cnt=;
for (int i=; i<=N; i++)
{
if (!flag[i]) prime[++cnt]=i;
for (int j=; j<=cnt && prime[j]*i<=N; j++)
{
flag[i*prime[j]]=;
if (prime[j]%i==) break;
}
}
}
void Calc(int x)
{
for (int i=prime[x]; i<=N; i+=prime[x])
for (int j=i; j%prime[x]==; j/=prime[x]) z[x]++;
}
int main()
{
scanf("%d",&N);
Getprime();
for (int i=; i<=cnt; i++) Calc(i);
for (int i=; i<=cnt; i++) printf("%d ",z[i]); puts("");
for (int i=; i<=cnt; i++) ans=((LL)ans*(z[i]<<|)%P)%P;
printf("%lld\n",ans);
return ;
}
【BZOJ-2721】樱花 线性筛 + 数学的更多相关文章
- BZOJ 2190 仪仗队(线性筛欧拉函数)
简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # in ...
- 【BZOJ2721】[Violet 5]樱花 线性筛素数
[BZOJ2721][Violet 5]樱花 Description Input Output Sample Input 2 Sample Output 3 HINT 题解:,所以就是求(n!)2的约 ...
- bzoj 2693: jzptab 线性筛积性函数
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 444 Solved: 174[Submit][Status][Discus ...
- [BZOJ 2721] [Violet 5] 樱花 【线性筛】
题目链接:BZOJ - 2721 题目分析 题目大意:求出 1 / x + 1 / y = 1 / n! 的正整数解 (x, y) 的个数. 显然,要求出正整数解 (x, y) 的个数,只要求出使 y ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- bzoj 2795 [Poi2012]A Horrible Poem hash+线性筛
题目大意 bzoj 2795 给出一个由小写英文字母组成的字符串S,再给出q个询问,要求回答S某个子串的最短循环节. 如果字符串B是字符串A的循环节,那么A可以由B重复若干次得到. n<=500 ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
随机推荐
- redis-cache中的callback
这个是mybatis/redis-cache中关键类 RedisCache 的源码 /** * Copyright 2015 the original author or authors. * * ...
- Permutation test 置换检验
来源:Public Library of Bioinformatics 显著性检验通常可以告诉我们一个观测值是否是有效的,例如检测两组样本均值差异的假设检验可以告诉我们这两组样本的均值是否相等(或者那 ...
- BZOJ 3669 【NOI2014】 魔法森林
Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...
- [LINK]Scribe
http://www.361way.com/scribe-chukwa-kafka-flume/4119.html
- spring发布和接收定制的事件(spring事件传播)
spring发布和接收定制的事件(spring事件传播) 2012-12-26 20:05 22111人阅读 评论(2) 收藏 举报 分类: 开源技术(如Struts/spring/Hibernat ...
- 翻译qmake文档(一) qmake指南和概述
翻译qmake文档 目录 英文文档连接: http://qt-project.org/doc/qt-5/qmake-manual.html http://qt-project.org/doc/qt-5 ...
- web 前端常用组件【04】Datetimepicker 和 Lodop
web项目中日期选择器和打印这两个功能是非常常见,将使用过的日期和打印控件,在这里总结归纳,为方便后面使用. 1.Datetimepicker a.官方API:http://www.bootcss.c ...
- 仿各种APP将文章DOM转JSON并在APP中以列表显示(android、ios、php已开源)
背景 一直以来都想实现类似新闻客户端.鲜城等文章型app的正文显示,即在web editor下编辑后存为json,在app中解析json并显示正文. 网上搜过,没找到轮子.都是给的思路,然后告知是公司 ...
- Linux下网络流量实时监控工具
Linux下网络流量实时监控工具大全 在工作中发现,经常因为业务的原因,需要即时了解某台服务器网卡的流量,虽然公司也部署了cacti软件,但cacti是五分钟统计的,没有即时性,并且有时候打开监控页面 ...
- [BZOJ3144][HNOI2013]切糕(最小割)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3144 分析:神题不解释 http://www.cnblogs.com/zig-zag/ ...