均值是所有训练样本的均值,减去之后再进行训练会提高其速度和精度。

1、caffe下的均值

数据格式是二进制的binaryproto,作者提供了计算均值的文件compute_image_mean,

计算均值时调用:

sudo build/tools/compute_image_mean examples/mnist/mnist_train_lmdb examples/mnist/mean.binaryproto

生成的均值文件保存在mean_binaryproto。

2、python格式下的均值(.npy)

需要首先将其转为二进制的,然后再转成python格式下的,用一个python脚本来实现。

#!/usr/bin/env python
import numpy as np
import sys,caffe if len(sys.argv)!=:
print "Usage: python convert_mean.py mean.binaryproto mean.npy"
sys.exit() blob = caffe.proto.caffe_pb2.BlobProto()
bin_mean = open( sys.argv[] , 'rb' ).read()//读入mean.binaryproto
blob.ParseFromString(bin_mean)//解析文件内容到blob
//将blob中的均值转化为.py格式,array的shape(mean_number,channel,height,width)
arr = np.array( caffe.io.blobproto_to_array(blob) )
//选择其中一组均值(?),保存
npy_mean = arr[]
np.save( sys.argv[] , npy_mean )

将其保存为convert_mean.py,调用

sudo python convert_mean.py mean.binaryproto mean.npy

得到python下的文件mean.npy

参考:http://www.cnblogs.com/denny402/p/5102328.html

http://blog.csdn.net/hyman_yx/article/details/51732656

3、caffe.proto

在2中,出现了caffe.proto,其中定了很多结构化的数据,比如conv层啊,pool层啊。Protobuf是用于数组存储和交换的,

比如一部分写数据进行存储,另一部分进行读写,为了方便操作,将其定义共同的结构化据。

具体可参考:http://blog.csdn.net/qq_16055159/article/details/45115359/

Caffe学习系列(12):不同格式下计算图片的均值和caffe.proto的更多相关文章

  1. Caffe学习系列(12):训练和测试自己的图片--linux平台

    Caffe学习系列(12):训练和测试自己的图片   学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...

  2. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  3. 转 Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  4. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于caffe). (亲测有效,记录经历两天的吐血经历)

    兜兜转转,兜兜转转; 一次有一次,这次终于把Faster R-CNN 跑通了. 重要提示1:在开始跑Faster R-CNN之前一定要搞清楚用的是Python2 还是Python3. 不然你会无限次陷 ...

  5. Caffe 学习系列

    学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...

  6. Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  7. Caffe学习系列(21):caffe图形化操作工具digits的安装与运行

    经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http:/ ...

  8. Caffe学习系列——工具篇:神经网络模型结构可视化

    Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...

  9. Caffe学习系列(22):caffe图形化操作工具digits运行实例

    上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...

随机推荐

  1. aircrack-ng test

    Aircrack-ng工具包有很多工具,我用到的工具主要有以下几个: airmon-ng 处理网卡工作模式 airodump-ng 抓包 aircrack-ng 破解 aireplay-ng 发包,干 ...

  2. easyUI数据表格datagrid之笔记

    1.用ajax获取数据库数据 /**========================================= * 读取数据库信息,使用ajax的load方法 */function getMe ...

  3. TemplateDataField

    .aspx <ig:TemplateDataField Key="TemplateField_0"> <Header Text="selected&qu ...

  4. 20145212 实验五《Java网络编程》

    20145212 实验五<Java网络编程> 一.实验内容 1.运行下载的TCP代码,结对进行,一人服务器,一人客户端: 2.利用加解密代码包,编译运行代码,一人加密,一人解密: 3.集成 ...

  5. C#----Graphics中部分方法的使用和理解

    1.DrawArc(Pen, Rectangle, Single, Single) 说明:绘制一段弧线,弧线是椭圆的一部分,椭圆是矩形Rectangle的内切椭圆. 参数:Pen是画弧线使用的画笔:R ...

  6. push submodule

    git status git add sparx git commit -m "message" git push

  7. Mac OS下配置Eclipse C++的方法

    http://nonlz.blog.163.com/blog/static/128872032201262622921622/

  8. PHP 学习

    http://www.w3school.com.cn/php/php_sessions.asp public static void chkacc() {Response.Redirect(" ...

  9. JavaScript基础整理(1)

    最近读了<JavaScript权威指南>这本书,闲来无事对自认为重要的知识做了些整理,方便以后查阅. JavaScript中的最重要的类型就是对象,对象是名/值对的集合,或字符串到值映射的 ...

  10. jq实现点击弹出框代码

    废话不多说,先贴代码吧 <script> function showBg() { //定义 showBg 函数 var bh = $("body").height(); ...