link: http://acm.hdu.edu.cn/showproblem.php?pid=4686

构造出来的矩阵是这样的:根据题目的ai * bi = ……,可以发现 矩阵1 * 矩阵3 = 矩阵2。然后就是矩阵快速幂了。

1

1 ai bi ai*bi Si
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2

1 ai+1 bi+1 ai+1*bi+1 Si+1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3

1 AY BY AY*BY AY*BY
0 AX 0 AX*BY AX*BY
0 0 BX AY*BX AY*BX
0 0 0 AX*BX AX*BX
0 0 0 0 1
 #include <iostream>
 #include <cstdio>
 #include <cstdlib>
 #include <cstring>
 #include <cmath>
 #include <cctype>
 #include <algorithm>
 #include <queue>
 #include <deque>
 #include <queue>
 #include <list>
 #include <map>
 #include <set>
 #include <vector>
 #include <utility>
 #include <functional>
 #include <fstream>
 #include <iomanip>
 #include <sstream>
 #include <numeric>
 #include <cassert>
 #include <ctime>
 #include <iterator>
 const int INF = 0x3f3f3f3f;
 ][] = {{-,},{,},{,-},{,},{-,-},{-,},{,-},{,}};
 using namespace std;
 #define LL __int64
 #define MOD 1000000007
 typedef struct
 {
     LL m[][];
 }mat;
 mat X, Y;
 LL n, a0, ax, ay, b0, bx, by;
 mat multi(mat a, mat b)
 {
     mat c; int j, i, k;
     ; i < ; ++i)
     {
         ; j < ; ++j)
         {
             c.m[i][j] = ;
             ; k < ; ++k)
             {
                 c.m[i][j] += a.m[i][k] * b.m[k][j]%MOD;
             }
             c.m[i][j] %= MOD;
         }
     }
     return c;
 }
 mat power(LL k)
 {
     mat ans = X, p = Y;
     while (k)
     {
         ) ans = multi(ans, p);
         k /= ; p = multi(p, p);
     }
     return ans;
 }
 int main(void)
 {
     #ifndef ONLINE_JUDGE
     freopen("in.txt", "r", stdin );
     #endif // ONLINE_JUDGE
     ios::sync_with_stdio(false);
     while (cin>>n>>a0>>ax>>ay>>b0>>bx>>by)
     {
         "<<endl; continue;}
         memset(X.m, , sizeof(X.m));
         memset(Y.m, , sizeof(Y.m));
         X.m[][] = , X.m[][] = a0%MOD, X.m[][] = b0%MOD,
         X.m[][] = a0*b0%MOD, X.m[][] = a0*b0%MOD;
         Y.m[][] = , Y.m[][] = ay%MOD, Y.m[][] = by%MOD,
         Y.m[][] = ay*by%MOD, Y.m[][] = ay*by%MOD, Y.m[][] = ax%MOD,
         Y.m[][] = ax*by%MOD, Y.m[][] = ax*by%MOD, Y.m[][] = bx%MOD,
         Y.m[][] = ay*bx%MOD, Y.m[][] = ay*bx%MOD, Y.m[][] = ax*bx%MOD,
         Y.m[][] = ax*bx%MOD, Y.m[][] = ;
         mat ans = power(n-);
         LL touch = ans.m[][];
         cout << touch <<endl;
     }
     ;
 }

注意 n==0 的时候特判呐~

走吧,小胖!

hdu4686 Arc of Dream ——构造矩阵+快速幂的更多相关文章

  1. hdu 4686 Arc of Dream(矩阵快速幂乘法)

    Problem Description An Arc of Dream is a curve defined by following function: where a0 = A0 ai = ai- ...

  2. HDU 4686 Arc of Dream (矩阵快速幂)

    Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  3. HDU-4686 Arc of Dream 构造矩阵

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 因为ai = ai-1*AX+AY ,bi = bi-1*BX+BY ,那么ai*bi=AX*B ...

  4. HDU 5667 构造矩阵快速幂

    HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...

  5. hdu 4565 So Easy! (共轭构造+矩阵快速幂)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求 ...

  6. HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)

    传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...

  7. hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * ...

  8. D. Magic Gems(矩阵快速幂 || 无敌杜教)

    https://codeforces.com/contest/1117/problem/D 题解:有一些魔法宝石,魔法宝石可以分成m个普通宝石,每个宝石(包括魔法宝石)占用1个空间,让你求占用n个空间 ...

  9. HDU4686 Arc of Dream 矩阵快速幂

    Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

随机推荐

  1. 背景:表A数据误操作,被delete了,恢复。

    SELECT MAX(Scn) FROM Sys.Smon_Scn_Time WHERE Time_Dp < TO_DATE('2015-09-18', 'YYYY/MM/DD') select ...

  2. 探究chrome下的开发工具的各功能

    F12 一.网页寻找js事件的位置,或者某一个次究竟在哪个相关的文件中可以全局搜索: ①控制台右上角的:(Customize and control DevTools)三个点点开,---->Se ...

  3. Head First 设计模式 --9 迭代器模式 组合模式

    迭代器模式:提供一种方法书序访问一个聚合对象中的各个元素,而又不暴露其内部的表示. 用到的设计原则:1.封装变化2.多用组合,少用继承|3.针对接口编程,不针对实现编程4.松耦合5.对扩展开放,对修改 ...

  4. Centos7 搭建 Keepalived+LVS 备注

    NAT模型需要RealServer gateway设定为,DR模式需要执行 RealServer.sh.需要先安装network-tools. #!/bin/bash#description : st ...

  5. RLP编码

    RLP(Recursive Length Prefix, 递归长度前缀编码),是Ethereum中对象序列化的一个主要的编码方式,其目的是对任意嵌套的二进制数据的序列进行编码. RLP的目的仅仅是编码 ...

  6. Yii 验证输入框是否输入的是数字

    在对应的Model文件的rules中加入如下代码: array('age,phone', 'numerical', 'integerOnly'=>true,'message'=>'{att ...

  7. PHP 扩展开发小结

    1. 变量操作(常量) 设置变量 ZVAL_*系列函数; 例: zval t; ZVAL_STRING(t,"10",2); 获取变量 Z_* 系列函数 获取变量指针 Z_*_P ...

  8. easyui-textbox 和 easyui-validatebox 设置值和获取值

    表单作如下定义:该input使用easyui的"easyui-textbox" <input id="addSnumber" style="wi ...

  9. css关系选择器

    1.包含选择符(E F) 选择所有被E元素包含的F元素,中间用空格隔开示例:<!DOCTYPE html><html> <head> <meta charse ...

  10. 二模 (13)day2

    第一题: 题目大意: 给出一个N*M的矩阵,定义一条路径的权值为经过的所有点权值的最大值.求一条从第一行到第N行的路径,使得路径权值最小. N,M<=1000 矩阵内点的权值小于1000. 解题 ...