Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 

2016.10.23

  摘要:本文针对传统超分辨方法中存在的结果过于平滑的问题,提出了结合最新的对抗网络的方法,得到了不错的效果。并且针对此网络结构,构建了自己的感知损失函数。先上一张图,展示下强大的结果:

  Contributions

  GANs 提供了强大的框架来产生高质量的 plausible-looking natural images。本文提供了一个 very deep ResNet architure,利用 GANs 的概念,来形成一个 perceptual loss function 来靠近 human perception 来做 photo-realistic SISR

  主要贡献在于:

  1. 对于 image SR 来说,我们取得了新的顶尖效果,降低 4倍的分辨率,衡量标准为:PSNR 和 structure similarity (SSIM)。具体的来说,我们首先采用 fast feature learning in LR space and batch-normalization 来进行训练残差网络。

  2. 提出了结合 content loss 和 adversarial loss 作为我们的 perceptual loss。

  Method

  首先是几个概念:

    super solved image $I_{SR}$: W * H * C ;   low-resolution input image $I_{LR}$: rW * rH * C ;   high-resolution image $I_{HR}$ : rW * rH * C.

  我们的终极目标是:训练一个产生式函数 G 能够预测给定的输入图像 LR input image 的 HR 部分。我们达到这个目的,我们训练一个 generator network 作为一个 feed-forward CNN $G_{\theta_{G}}$ 参数为 $\theta_{G}$ , 此处的 $\theta_{G} = {W_{1:L} ; b_{1:L}}$ 表示一个 L 层 deep network 的 weights 和 biases,并且是通过优化一个 SR-specific loss function $l^{SR}$ 得到的。对于一个给定的 训练图像 $I^{HR_{n}}$ ,n =  1,...,N 对应的低分辨率图像为:$I^{LR}_n$ ,我们优化下面这个问题:

  1. Adversarial Network Architecture 

  产生式对抗网络的训练学习目标是一个 minmax problem :

  作者也将图像超分辨看作是这么一个过程。通过 generator 产生一张超分辨图像,使得 discriminator 难以区分。

  上图就是本文所涉及的大致流程。

  

  2. Perceptual Loss Function 

  本文所设计的感知损失函数 是本文算法性能的保证。

    2.1. Content Loss 

    像素级 MSE Loss 的计算为:

    这个是最经常使用的优化目标。但是,这种方式当取得较高的 PSNR的同时,MSE 优化问题导致缺乏 high-frequency content,这就会使得结果太过于平滑(overly smooth solutions)。如图2 所示:

    我们对此做了改进,在 pre-trained 19-layer VGG network 的 ReLU activation layers 的基础上,定义了 VGG loss

    我们用 $\phi_{i,j}$ 表示 VGG19 network 当中,第 i-th max pooling layer 后的 第 j-th 卷积得到的 feature map。然后定义 the VGG loss 作为重构图像 和 参考图像之间的欧氏距离 :

    其中,$W_{i, j}$  and $H_{i, j}$ 表示了 VGG network 当中相应的 feature maps 的维度。

    

    2.2. Adversarial Loss 

    在所有训练样本上,基于判别器的概率定义 generative loss :

    此处,D 是重构图像是 natural HR image 的概率。

  

    2.3. Regulatization Loss 

    我们进一步的采用 基于 total variation 的正则化项 来鼓励 spatially coherent solutions。正则化损失的定义为:

  


  3. Experiments

     

  


  总结 :  本文给出了一种比较直观的利用 产生式对抗网络的方法,结合 GANs 的比较好的应用到 Super-Resolution 上。

      主要是利用了 GANs 可以创造新的图像的能力。

      

  

  

  

论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network的更多相关文章

  1. 论文阅读:Single Image Dehazing via Conditional Generative Adversarial Network

    Single Image Dehazing via Conditional Generative Adversarial Network Runde Li∗ Jinshan Pan∗ Zechao L ...

  2. ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution

    ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Sprin ...

  3. Speech Super Resolution Generative Adversarial Network

    博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito K ...

  4. Face Aging with Conditional Generative Adversarial Network 论文笔记

    Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28  Motivation: 本文是要根据最新的条件产 ...

  5. 【论文学习】A Fuzzy-Rule-Based Approach for Single Frame Super Resolution

    加尔各答印度统计研究所,作者: Pulak Purkait (pulak_r@isical.ac.in) 2013 年 代码:CodeForge.cn http://www.codeforge.cn/ ...

  6. 《MIDINET: A CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORK FOR SYMBOLIC-DOMAIN MUSIC GENERATION》论文阅读笔记

    出处 arXiv.org (引用量暂时只有3,too new)2017.7 SourceCode:https://github.com/RichardYang40148/MidiNet Abstrac ...

  7. CSAGAN:LinesToFacePhoto: Face Photo Generation from Lines with Conditional Self-Attention Generative Adversarial Network - 1 - 论文学习

    ABSTRACT 在本文中,我们探讨了从线条生成逼真的人脸图像的任务.先前的基于条件生成对抗网络(cGANs)的方法已经证明,当条件图像和输出图像共享对齐良好的结构时,它们能够生成视觉上可信的图像.然 ...

  8. 生成对抗网络(Generative Adversarial Network)阅读笔记

    笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...

  9. DeepPrivacy: A Generative Adversarial Network for Face Anonymization阅读笔记

    DeepPrivacy: A Generative Adversarial Network for Face Anonymization ISVC 2019 https://arxiv.org/pdf ...

随机推荐

  1. netstat__stat

    1."man netstat" 查看 命令"netstat"的参数和打印信息的含义 2."netstat -awp" --> ZC: ...

  2. Effective Objective-C 2.0 学习记录

    由于最近入职,公司安排自由学习,于是有时间将Effective Objective-C 2.0一书学习了一遍.由于个人知识面较窄,对于书中有些内容无法理解透彻,现将所学所理解内容做一遍梳理,将个人认为 ...

  3. 拼接字符串去掉最后多余的串,JSON的遍历

    一.遍历json change_url: function(key, value){ condition[key] = value; var string_url = "?"; f ...

  4. git github 异常

    git :版本控制工具 github:项目托管 git clone failed:git是否安装正确 github commit failed:github 是否账号 / 密码是否正确(密码错误也可以 ...

  5. 用substr()截取中文出现乱码的解决方法

    截取中文字符串时出现乱码(使用substr()函数) 程序一:PHP截取中文字符串方法 function msubstr($str, $start, $len) {    $tmpstr = &quo ...

  6. android studio gradle升级

    http://services.gradle.org/distributions 下载最新的gradle-3.0-all.zip包 放入C:\Users\Administrator\.gradle\w ...

  7. Sprint2-3.0

    后续安排 第16周 周二晚7点之前将本代码上传到GITHUB. GITHUB地址:https://github.com/QueenIcey/teamwork/tree/master/eslife1 周 ...

  8. 导出Excel 有身份证时注意

    if (this.GridView1.Rows.Count != 0)            {                HttpContext.Current.Response.Clear() ...

  9. uva 1660 & poj 1966(点连通度)

    Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4267   Accepted: 2003 ...

  10. JDE Develop Server分别安装DV PY PD后WEBSERVER问题

    一般安装时一次性安装完DV\PY\PD环境后,再安装WEBSERVER时只需要修改一次配置文件即可,但如果先安装顺序如下: DV->WEBSERVER->PY 此时,配置程序被初始化,必须 ...