将三角网格上的顶点坐标(x,y,z)看作3个独立的标量场,那么网格上每个三角片都存在3个独立的梯度场。该梯度场是网格的微分属性,相当于网格的特征,在形变过程中随控制点集的移动而变化。那么当用户拖拽网格上的控制点集时,网格形变问题即变为求解以下式子:

  根据变分法,上式最小化即求解泊松方程:

其中Φ为待求的网格形变后坐标,w为网格形变后的梯度场。

  上式可以进一步表示为求解稀疏线性方程组:

其中L为网格的拉普拉斯算子,b为梯度场w在网格顶点处的散度值。

  问题的关键是如何得到网格形变后的梯度场w,文章[Yu et al. 2004]提到其是通过由控制点集变换的加权运算得到,并且提出了几种不同的加权方式(线性加权,高斯加权等)。另外文章[Zayer et al. 2005]中提到可以在网格内构建一个调和场作为加权系数。

1.离散梯度算子定义:

      假设f是一个分片线性函数,在网格的每个三角片{xi,xj,xk}的顶点处有f(xi)=fi,f(xj)=fj,f(xk)=fk,通过线性插值可以知道f在三角片上每一点处的值为:

  这样f的梯度如下:

其中基函数Φi,Φj,Φk满足Φijk=1,那么它们梯度之和▽Φi+▽Φj+▽Φk=0。所以f的梯度可以写成如下形式:

  经简单计算可以求得▽Φi的表达式是,同样也可以写出▽Φj、▽Φk的表达式,其中⊥表示将向量逆时针旋转90度,A表示三角片的面积。

2.离散散度算子定义:

       设向量值函数w:S→R3,S表示网格,w表示在每个三角片上的向量,那么w在顶点xi处的散度可以定义为:

其中T(xi)表示顶点xi的1环邻域三角片,AT表示三角片T的面积。

3.离散Laplace算子定义:

       将梯度算子表达式代入散度算子表达式可以得到顶点xi处的Laplace算子如下形式:

其中N(xi)表示顶点xi的1环邻域点。

效果:

本文为原创,转载请注明出处:http://www.cnblogs.com/shushen

参考文献:

[1] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. "Mesh Editing with Poisson-Based Gradient Field Manipulation." ACM Transactions on Graphics (Proc. SIGGRAPH) 23:3 (2004), 644-51.

[2] R. Zayer, C. Rossl, Z. Karni, and H.-P. Seidel. "Harmonic Guidance for Surface Deformation." Computer Graphics Forum (Proc. Eurographics) 24:3 (2005), 601-10.

[3] 许栋. 微分网格处理技术[D]. 浙江大学, 2006.

[4] 刘昌森. 三角网格曲面上的laplace算子及其应用[D]. 中国科学技术大学, 2012.

三维网格形变算法(Gradient-Based Deformation)的更多相关文章

  1. 三维网格形变算法(Laplacian-Based Deformation)

    网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程 ...

  2. 三维网格形变算法(Linear rotation-invariant coordinates和As-Rigid-As-Possible)

    在三维网格形变算法中,个人比较喜欢下面两个算法,算法的效果都比较不错, 不同的是文章[Lipman et al. 2005]算法对控制点平移不太敏感.下面分别介绍这两个算法: 文章[Lipman et ...

  3. 三维动画形变算法(Laplacian-Based Deformation)

    网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程 ...

  4. 高阶Laplace曲面形变算法(Polyharmonic Deformation)

    数学上曲面的连续光滑形变可以通过最小化能量函数来建模得到,其中能量函数用来调节曲面的拉伸或弯曲程度,那么能量函数最小化同时满足所有边界条件的最优解就是待求曲面. 能量函数通常是二次函数形式: 其中S* ...

  5. 三维动画形变算法(Gradient-Based Deformation)

    将三角网格上的顶点坐标(x,y,z)看作3个独立的标量场,那么网格上每个三角片都存在3个独立的梯度场.该梯度场是网格的微分属性,相当于网格的特征,在形变过程中随控制点集的移动而变化.那么当用户拖拽网格 ...

  6. 三维动画形变算法(Linear rotation-invariant coordinates和As-Rigid-As-Possible)

    在三维网格形变算法中,个人比较喜欢下面两个算法,算法的效果都比较不错, 不同的是文章[Lipman et al. 2005]算法对控制点平移不太敏感.下面分别介绍这两个算法: 文章[Lipman et ...

  7. 三维动画形变算法(Mixed Finite Elements)

    混合有限元方法通入引入辅助变量后可以将高阶微分问题变成一系列低阶微分问题的组合.在三维网格形变问题中,我们考虑如下泛函极值问题: 其中u: Ω0 → R3是变形体的空间坐标,上述泛函极值问题对应的欧拉 ...

  8. 三维网格分割算法(Random Walks)

    首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则 ...

  9. 三维网格去噪算法(L0 Minimization)

    [He et al. 2013]文章提出了一种基于L0范数最小化的三角网格去噪算法.该思想最初是由[Xu et al. 2011]提出并应用于图像平滑,假设c为图像像素的颜色向量,▽c为颜色向量的梯度 ...

随机推荐

  1. php获取数组第一个值 current()

    获取数组第一个元素的值,如果是数字索引那还好,直接$array[0],如果键名是字符串,你又未知这个字符串呢?用current()函数就可以做到. current() 函数返回数组中的当前元素(单元) ...

  2. HTML5拖放(drag and drop)与plupload的懒人上传

    HTML5拖放能够将本地的文件拖放到页面上,plupload又是很好的文件上传插件,而今天就将两者结合,做了个文件拖拽上传的功能. 简述HTML5拖放 拖放是HTML5标准的一部分,任何元素都能够拖放 ...

  3. .net MVC 连接数据本地数据库三种方法

    <appSettings> <add key="webpages:Version" value="2.0.0.0" /> <add ...

  4. 玩转 HTML5 Placeholder

    Placeholder(占位符) 是 HTML5 新增的一个 HTML 属性,用来对可输入字段的期望值提供提示信息,目前已经得到主流浏览器的广泛支持,使用方式非常简单: <input id=&q ...

  5. 简单代码在ABAP中实现声音的播放

    这段代码的功能是在SAP里面实现声音的播放,可以用作程序提醒功能,和SAP里面’噹噹噹’那个声音的意思差不多.将来在项目中遇到客户想要SAP ABAP发出一点声音的时候就可以参考一下这个程序. REP ...

  6. 对称密码-DES和3DES

    最近在看信息安全的知识,就总结了一下自己所学到知识. 先说一下什么是对称密码算法,什么是对称密码算法呢?对称密码算法是指有了加密密钥就可以推算出解密密钥,有了解密密钥就可以推算出加密密钥的的算法. 那 ...

  7. 微信小程序如何设置开发者和体验者

    微信小程序需要在后台添加开发者和体验者 开发者:增加开发人员的,开发人员添加后,可上传代码,最多10个人,可以删除 体验者:添加为体验者,管理员发布体验版本后,通过扫码二维码可以下载体验版小程序,最多 ...

  8. iOS-H5学习篇-01

    什么是HTML? HTML 是用来描述网页的一种语言. 0.HTML 指的是超文本标记语言 1.HTML 不是一种编程语言,而是一种标记语言 2.标记语言是一套标记标签 3.HTML 使用标记标签来描 ...

  9. iOS 申请测试用的远程推送证书

    进入member center创建一个App ID 注意下面证书名字的变化 将刚刚生成的两个证书下载下来,双击安装 安装完成后可以在钥匙串中查看 这样远程推送证书的申请流程就走完了

  10. Visual Studio 开发平台的安装与单元测试

    一.安装VS2013 1.运行安装文件夹中的.exe文件,选择好安装路径与所需功能后开始安装 2.安装后第一次打开,需要一段时间 3.安装成功后,要打开VS2013,在工具栏中找到帮助选项卡,点击注册 ...