通常更加高级的形态学变换,如开闭运算、形态学梯度、“顶帽”、“黑帽”等等,都是可以由常用的腐蚀膨胀技术结合来达到想要的效果。

1.开运算:先腐蚀后膨胀,用于用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变其面积,就是使图片过度更为顺畅,填补小的空隙。

2.闭运算:先膨胀后腐蚀,能够排除小型黑洞(黑色区域),就是不让图片有细小分支向外伸出。

3.形态学梯度(Morphological Gradient):

膨胀图与腐蚀图之差,数学表达式如下:

二值图像进行这一操作可以将团块(blob)的边缘突出出来。我们可以用形态学梯度来保留物体的边缘轮廓

4.顶帽(Top Hat):

顶帽运算(Top Hat)又常常被译为”礼帽“运算。为原图像与上文刚刚介绍的“开运算“的结果图之差,数学表达式如下:

顶帽运算往往用来分离比邻近点亮一些的斑块。当一幅图像具有大幅的背景的时候,而微小物品比较有规律的情况下,可以使用顶帽运算进行背景提取。

5.黑帽(Black Hat):

黑帽(Black Hat)运算为”闭运算“的结果图与原图像之差。数学表达式为:

黑帽运算后的效果图突出了比原图轮廓周围的区域更暗的区域,且这一操作和选择的核的大小相关。

所以,黑帽运算用来分离比邻近点暗一些的斑块。

6.API函数实现:

void  morphologyEx(  InputArray src,  OutputArray dst,  int op,    InputArraykernel,  Pointanchor=Point(-1,-1),   intiterations=1,  intborderType=BORDER_CONSTANT,    constScalar& borderValue=morphologyDefaultBorderValue() );

  • 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。图像位深应该为以下五种之一:CV_8U, CV_16U,CV_16S, CV_32F 或CV_64F。
  • 第二个参数,OutputArray类型的dst,即目标图像,函数的输出参数,需要和源图片有一样的尺寸和类型。
  • 第三个参数,int类型的op,表示形态学运算的类型,可以是如下之一的标识符:
    • MORPH_OPEN – 开运算(Opening operation)
    • MORPH_CLOSE – 闭运算(Closing operation)
    • MORPH_GRADIENT -形态学梯度(Morphological gradient)
    • MORPH_TOPHAT - “顶帽”(“Top hat”)
    • MORPH_BLACKHAT - “黑帽”(“Black hat“)

另有CV版本的标识符也可选择,如CV_MOP_CLOSE,CV_MOP_GRADIENT,CV_MOP_TOPHAT,CV_MOP_BLACKHAT,这应该是OpenCV1.0系列版本遗留下来的标识符,和上面的“MORPH_OPEN”一样的效果。

  • 第四个参数,InputArray类型的kernel,形态学运算的内核。若为NULL时,表示的是使用参考点位于中心3x3的核。我们一般使用函数 getStructuringElement配合这个参数的使用。getStructuringElement函数会返回指定形状和尺寸的结构元素(内核矩阵)。关于getStructuringElement我们上篇文章中讲过了,这里为了大家参阅方便,再写一遍:

其中,getStructuringElement函数的第一个参数表示内核的形状,我们可以选择如下三种形状之一:

    • 矩形: MORPH_RECT
    • 交叉形: MORPH_CROSS
    • 椭圆形: MORPH_ELLIPSE
  • 第五个参数,Point类型的anchor,锚的位置,其有默认值(-1,-1),表示锚位于中心。
  • 第六个参数,int类型的iterations,迭代使用函数的次数,默认值为1。
  • 第七个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_ CONSTANT。
  • 第八个参数,const Scalar&类型的borderValue,当边界为常数时的边界值,有默认值morphologyDefaultBorderValue(),一般我们不用去管他。需要用到它时,可以看官方文档中的createMorphologyFilter()函数得到更详细的解释。

这里看的乱七八糟,这是原贴:http://blog.csdn.net/poem_qianmo/article/details/24599073

opencv的学习笔记4的更多相关文章

  1. OpenCV入门学习笔记

    OpenCV入门学习笔记 参照OpenCV中文论坛相关文档(http://www.opencv.org.cn/) 一.简介 OpenCV(Open Source Computer Vision),开源 ...

  2. Android NDK开发及OpenCV初步学习笔记

    https://www.jianshu.com/p/c29bb20908da Android NDK开发及OpenCV初步学习笔记 Super_圣代 关注 2017.08.19 00:55* 字数 6 ...

  3. OpenCV图像处理学习笔记-Day1

    OpenCV图像处理学习笔记-Day1 目录 OpenCV图像处理学习笔记-Day1 第1课:图像读入.显示和保存 1. 读入图像 2. 显示图像 3. 保存图像 第2课:图像处理入门基础 1. 基本 ...

  4. OpenCV图像处理学习笔记-Day03

    OpenCV图像处理学习笔记-Day03 目录 OpenCV图像处理学习笔记-Day03 第31课:Canny边缘检测原理 第32课:Canny函数及使用 第33课:图像金字塔-理论基础 第34课:p ...

  5. OpenCV图像处理学习笔记-Day4(完结)

    OpenCV图像处理学习笔记-Day4(完结) 第41课:使用OpenCV统计直方图 第42课:绘制OpenCV统计直方图 pass 第43课:使用掩膜的直方图 第44课:掩膜原理及演示 第45课:直 ...

  6. 播放一个视频并用滚动条控制进度-OpenCV应用学习笔记二

    今天我们来做个有趣的程序实现:利用OpenCV读取本地文件夹的视频文件,并且在窗口中创建拖动控制条来显示并且控制视频文件的读取进度. 此程序调试花费了笔者近一天时间,其实大体程序都已经很快写出,结果执 ...

  7. 视频文件写入转换之图像处理-OpenCV应用学习笔记五

    在<笔记二>中我们做了视频播放和控制的实现,仅仅算是完成了对视频文件的读取操作:今天我们来一起练习下对视频文件的写入操作:格式转换. 实现功能: 打开一个视频文件play.avi,读取文件 ...

  8. opencv的学习笔记2

    继续昨晚的学习总结,昨晚看到轨迹条的创建就没有看下去了,今天继续: 1.轨迹条的创建: 轨迹条往往会和一个回调函数配合使用,当轨迹条发生改变,就调用这个轨迹条的回调函数 int createTrack ...

  9. 【opencv】学习笔记

    安装 此笔记仅对python36实用 OpenCV装3.4.1.15 指令:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv ...

  10. opencv的学习笔记5

    总结原博文中的一些边缘检测算子和滤波器.(Canny算子,  Sobel算子,  Laplace算子以及Scharr滤波器) 首先,一般的边缘检测包括三个步骤: 1)滤波:边缘检测的算法主要是基于图像 ...

随机推荐

  1. If A wants to use B

    Find the place where B is used, and use C to call C.B RootFrame.Navigated += CheckForResetNavigation ...

  2. 关闭CentOS不必要的开机启动项

    命令行: for i in `chkconfig --list |grep 3:on|awk '{print $1}' |grep -Ev "network|sshd|sysstat|ude ...

  3. thinkphp 的create()非法数据解决办法

    是因为create()方法默认是使用post传值的,把from表单的传值方法改成post就行了,默认是get.

  4. ellipsis

    语法:  text-overflow : clip | ellipsis 参数:  clip : 不显示省略标记(...),而是简单的裁切(clip这个参数是不常用的!)      ellipsis ...

  5. zk回车事件

    private Textbox testTextB; testTextB.addEventListener(Events.ON_OK, new EventListener<Event>() ...

  6. Careercup | Chapter 8

    8.2 Imagine you have a call center with three levels of employees: respondent, manager, and director ...

  7. Python3.5连接Mysql

    由于mysqldb目前仅支持到python3.4,所以这里选择pymysql. pymysql下载地址: https://pypi.python.org/packages/source/P/PyMyS ...

  8. JVM监控和Java应用程序调试

    JConsole.VisualVM监控JVM(JMX) JAVA_OPTS后加:-Dcom.sun.management.jmxremote.port=8999 -Dcom.sun.managemen ...

  9. Json 、 Jsonp

    SONP is simply a hack to allow web apps to retrieve data across domains. It could be said that it vi ...

  10. C/C++相对论——C++中为什么要使用异常(跳转语句会造成对象没有被析构)

    C++中为什么要使用异常? 很多人也许知道C++中的异常机制,很多人也许不知道.很多人知道C中常用的assert,也知道在编译时候指定NODEBUG来忽略它. 对于C语言,使用正常的if-else即是 ...