以前的项目中有用到redis的keys命令来获取某些key,知道看了这篇文章 https://mp.weixin.qq.com/s/SGOyGGfA6GOzxwD5S91hLw。安全起见,这次打算优化一下。官网建议使用scan命令来代替。于是就用了……
官网的scan命令介绍 http://doc.redisfans.com/key/scan.html
scan命令的基本用法
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAVoAAAAnCAYAAABOmoDdAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAZ2SURBVHhe7ZrbdfI6EIXTCFX4jQoows88uoaUQDU0QzE+M5JljaQtyxiRn+TsrPWthBndPJeNMfmSn5kQQshbgUZCCCH9gEZCCCH9gEZCCCH9gEZCCCH9gEZCCCH9gEZCCCH9gEZCCCH9gEZCCCH9gEZCCCH9gEZCCCH9gEbyCZwu8/T9PX8Hpst8QuPIh3GaL5PJ2/c0X05oXAPm/x/RKX8p0Eg+Addo4zwgH/klDPP4ktAy//+WF/KXAo3kE4CNponP724W2ziYccryzpyMzd+tM8LYk6w5TcY3zeNwWtbw+41DWFPH/7QogDM85f8p9BxvENrN/HzNp2GUucZ3iT4cG7WFvbx/Kuaof2f9fDwoBggd906hPd/m+2OOP4/7fD2nY863+5wOuc3nZL7xJvOv811M9+t5vppNHvdrnL+D08UWkxTGGJJcBvF0kaJchSj4pWjGUKxZMKXIR1tQkxRZEmw/dxpHV/BT4t+x/h62hNauJ031rWfIhTbYN/YeRlkrn+f21XgOsWlOJ7m+XkIb5svvEGOJXxl/IyQmvu7MwW4I52n5A0n9PJW/6B9WfxavFR17IPdKLaat/Gjedc8gvCrKOn4VznD+Ze5qC3t5f3nN5Vlg/eyk3r/Knv4Kr+v9jfKztz7iWgfzl4KMUQhX2/mciOD5pgL5mG9mzFnGhL+/zlcjrOdZhz9uwe/X1/nrHirMbs8wZxsXWFtMatsQApSIOF+SKslEjRTmayEnRSACYd/x/XlAocL1dwIbTdcWUZL9wv5aTJdBxmYFrwWlMdhqBuRrN08Z3yNCG8VNG0Jfm0YTcYiNVcYbniFh27/ma9nDvV73X87XqA/1rzWibwxwPx17IPdKJabb+fGxKvxOfMNaKDZqs34VN7uO9UfatYLZ7t99/WXP7/zJWVv5KdfA+Fi8SWi9MIoyilga8cz8UTjbXL2KLq+DkNsxfs19Qosaz7IvEfUgL8UqjRfv4gyuAfLg2zX3JrEBbDRdW2zBp79VIPS3LfhgD3+DJlHKRvFnr8dW8WPKuwK8RwmIjztjvaBr56zHeMsP6ieJ0ZG1/ZrlHB3bU2j93s/UviOJLxqjNnv98rebE8ZZf+SY0Db6F9aCPXN5/nZ/5/lBYxA67mD+UqDRI3el/pP9I/tYj4QyR4QzefYgP92EthWkI4kAuOdgKiD6EcZ8TEvuDgJ2zZ3rt6g2mtqWYtWPVVqwOtYUvF5vLOR6Yb8itMn1wbPWqM23BS1nNh/7HOCc9Rhv+b0vWduxJUQW5M8bOaBjDzZqNf8/JLTyt+sb97f1R44JbeWMgQP99buFNrB8rI93sK07Wu9XYQ3i/K/vaNOC2BvkBSlSHb/uV4iCYtd8cv0a1UZbbLYgdex6fT4+hZDYj+YLqFGcDYyNgOuDZ60B5ifNtZxfzhXOUHtDqMd4y/98/bT9eSMHdGxPoW3lJ8YusT/96CDPxWhsEVQ/bRrxP9Bf6TnQ9eX5QWMQOu5dQqvPV6/mmaze2WbCGJ7R4ue4fvwqxDI/CK8f+6rQhnfa9JvW+Bw1TaS7u5OgbifCoM8HZd21kJcvE+L4slDiO7++3pvEBi2htVihlaZKHiM48Jlgo7h95fr0y4m1wCQeG8/Aa6KA8fN1X5uvPD/xjW3I/HFOXSy3/aF+7DPCWD84VhHk9/uVc3RsX6Ft5seJqrm2pX5tLIq865xVvHW82XfZr7zLPCq0z/VvHB/2T/37+jvPz3Z9RF7IXwowukcGqozhRwQV3L0W/3XwMP91ILewwaf26/XmXzuxfV1oleJbS/sur2IT7BJMl6jNRBjcIwNNbFg7//cYRRL1xLeih4CNpmuXBe/GLtenxY/2Rk1RbRQQg1iU4PpqogBZ5kvs1hwl3zgLNn+S10G/7NPX9qxmjBuX56jhL+sn5LCVP+TPGzmgYzsLrfPJutX8yLUl175Rv652FYnx6tMzp/umQhc5KrTKZv9u9pfwdH+D/LTqx/FC/lKgkXwCT4nXbwI1wl/lhUb9s/n/TVBo/z6u0eI77vZz09/EXxdaf/e05u0loTXr/Jn8fzqd8pcCjYS8kf/THS0hDmgkhBDSD2gkhBDSD2gkhBDSD2gkhBDSD2gkhBDSD2gkhBDSD2gkhBDSD2gkhBDSD2gkhBDSD2gkhBDSD2gkhBDSD2gkhBDSD2gkhBDSD2gkhBDSD2gkhBDSha/5P4T7X9tllwY+AAAAAElFTkSuQmCC" alt="" />
cursor 用法
    scan命令是一个基于游标的迭代器(cursor based iterator): scan命令每次被调用之后, 都会向用户返回一个新的游标, 用户在下次迭代时需要使用这个新游标作为 scan命令的游标参数, 以此来延续之前的迭代过程。 当 scan命令的游标参数被设置为 0 时, 服务器将开始一次新的迭代, 而当服务器向用户返回值为 0 的游标时, 表示迭代已结束。
    示例
    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAosAAADUCAYAAAD0rWkcAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADVhSURBVHhe7Z2JkeM6r0ZvXA7IVX82E8KLwsl0MP0ALhIXkNRqS+7DqlMzLYgkCNHNryFR/u///u//fv/3v//9/vfffwAAAAAAOYhFAAAAAGiCWAQAAACAJohFAAAAAGjSFouP38fz3+/r5/f39Sxt//0+/v38iimUn9/Xv0dif/6+giUrr2dyzojH71M7D+VH6j7M81rsr98b/yIeEofZhdwHaTsxFf4tiV85vn8rx3d39l5fAAAAWIQlFh//Xr8/Py8RgPKvLMSmWHzK4vwIPz+88GmLqsfvvx8RlCtEl4rR358ogLS+/pgK0j576i8Z/5ApJnOfj0fSv/x/jp8Xh23/6vi58U0C0Y9PTpjs387e+QEAAAAL6d+G9iJmLJYGi/VTRNeqhdzoV9qQI7/P7LwWe+tHRuMPIs1o13e3VLytjZ8/vzU+FbuvfzszbSJ206zor4jnZxS3ASeqg1lLlt109RNrVj/GdWt28KjrCwAAAEOOEYu988SmQqE63sFl5Yo67tjP779CsJjsrT8xGn9LLAYxJ4Jt0kISg1bferu78nfCip/hVzY+EWFOyEmrm0RjbD8RqJoJTc5xmT3tr5k5fSbisBTDvn2tP/Uh/vdjnXDY9QUAAIAh+8ViPyumomKRAEgxs0RLfAnsrT+xpY4SxNCUTVPxpuIq98m56Uoimgpa8XN1k9uwMUOXn+uPrxeNQQRL+89UABb2Ndlif0liptWKaxDYS2J92PUFAACAIfvEoi7wIkVaokGzPZOgWcHezNFhmad9YjGPix5r9N96ZrEbP4n9nLb8/eeyk6324y3lKF4XMm3QkZazW8RL4pL6F8pRYvGw6wsAAABDtotFv7j3skua1VovtBSjXzOb1GJv/cgSUWRhxUbbaosZv2Elf8ZxVfzM8W3NLBao2JTW5/GMrr2363hin4dmFg+7vgAAADBkq1h0a3Mva9jNiim+7dYCP97tem799Jy2gAmiyGrDB2gSh7k/QvoMoJVZHMXPqD/7ufOZRX3e8NlrP4xH2zefayzGI/Xd6YeJxSXXFwAAAA7BEoteCBhlWpz9Yl+WdLF2bRSZspzYRkuszc/haal3yp5Xfzz+SEcsCtlu4WKTitrmUt7mHcfvIWI0GZ2cmsZ+525oFYfpTmZt3xBi1W7oND6Jf3r8Gd8r6cbkY79HLI6vLwAAABxCP7MIAAAAAH8axCIAAAAANEEsAgAAAECTbWLRP3O26zmxdAOIe+3JmufVhL31AQAAAGBMWyw+3DeL6B4CW4TFDQatDSYDnMCLdVV8pq+ViZtPipJu+OjWBwAAAIBDsMSi2+X6oztq/Y7WXsYuf4XJCrJXw4zEnu6U1R2/ybFV9QEAAABgE/3b0D7D17+9u+ScnehrWHiHHgAAAMD72S8Wy2/nOBrxoXhHIQAAAAC8iSPE4vgF3NvRtk/NWgIAAABAm0uLxey5RAAAAAB4O1e+Da27rckqAgAAAHyQy25wIasIAAAA8HkssehuK1vFEG+bX50z4MznIAEAAABgIf3MYo+dL+UGAAAAgOuzTSz6W8+7vu4PAAAAAK7P9swiAAAAAHw998wsHtC/28IdviLQfc/0CZt0Ulwf1i17/SpDdYXNPH+Kd88/AACArbTEom4w0QXMF5E51dftnf3M4uP38fz3q13Yi+jO/jPxpuIz/W5pL0arMm24GdkNEItfRpx/ofy8iu8mH8zf7vwDAAC4EE2x+Hz+PuLi1cl8nLEb+vFPlk5ZfF/6b6PfyOb+dUxTvdFirYJOlvamHyO70BSLcEfyeReEY/hjYdH8XTX/AAAAPsiy29A++/VTZRcVn2XrCqXNLGn7zP4DT1nKzbEHTLvEbMo8iUz8l4tFJzbS0stKWojYeIlAnYp+f/YkNmJM5N/JhTTzNbJHQtYz8duht1BF6PjxqUiOWbZc8DjRpNW1ZP4Jzv9g07LJnpxQ2qv4qy/5OLr+ORrjF9z1S65Z+bPnDXMTAADgbJaJxf6i5x6/Wit2FrFssT2vf0UFVS0WRnbnU5l5MkTHdO5qsfhMxE0p5n3cZgGk/af+jOyRjljUoyISvej1IlEPRx/88dh++LnoX+tPbT6krfj/oV1/7o3fir/8nIyj71+kLRb9dReTxPCfyySWdcM5WhuxCAAAd2YsFuuFuMQttB8Ui+f179vu9W/bDb/1tqMpOo4Ru3kbrf5j5m9kH+BVoRNHaez9YZ0nxpzJxh9EmLTxFBE4nTMxstcsG3/ef9u/JWgbErGQ3fx5IRYBAOBL6YvFsCB2hKLytWJRBYSZMQq07E54FMKrI0a2iUW5Ntl9WilDsfQusejbr0sZEznPDUF6ljbqOPbsnfEP47/Qvw7zWOVn8TOK29xHI84AAAB3oy0WjexLg21iZwnLFtuz+tdbx72+m/ahWMlZ77+/NlonipO8DSNu/oRMLLXtA/TcrlhcPnccEhvtvXl+ZR+Mfxj/lf5VGPGz+kQsAgDAN9ASi27x7WXVJs5cEJe0fVL/uvj3xt+1F2JmypAdJRb9mCexEzNbUxvePvWf+LPMHgnHS7+HYjEcV/FkPXco/j71ecfpeHENR/bh+Mfx7/o30Rj/1P58/X175Xml3wAAADfEFot+kSuLlYlxi+QiUbkcv/AaxejnjP4V124lnpbbVUxOd0l1I8kzzWzlrBeLglSampfx+/aluHaCSHkl52TP1I3ske1iUcl2G0vR18m4DSVOvGUW0V2paBvYle74YxvOLCfY8W/6N53TEouKCtSkdlJ3zfwFAAC4POMNLi36O3zP59P9H0cusryQa5cl4w1isJnRGtm/kETgmnYAAACw2SYWvdi49df9fZTH/MLzkL06VrghFvNbyvG28crsLQAAAOzJLMJ2wjN2oajotc/bCmLxkdym1nLfPywAAAA+zD3F4gGZRb0tKXLC7V51O1lPFk+uD+sWcsh6rbpF+gcyg6fyhvi9e34BAACcxVXFom4SmDNDxgaHvc8sZuJNxUP62hMvJqoyZQBHdoO3i8XaR2uD0t9kSfx20p1fAAAAN+KyYvH5nJ/r62Rm3M7TLRsXtM2p3mgxV0EnS39TXIzsQlMsbmGpWDyqvyuyR/DtqbuQVfMLAADgwtzjNrTPvtmZsTcs/Pr8Wy8rZ9rF5/ndLb+vf7lYrF6vsuq5xTjmmF31Jb8tr+eMxGLIalbn1TFNX5HjEDGUdK2dF6+d0ToqkULJ7LP/aYyWiil3h9co+Rzwbf+8JAoi5PPX4tTj0ziWjzUs8b8dfwAAgC/hHmKxXtxTnHhYJbbWIH2rUDBtim33j6zFzFL/lvl6/308VGCpYHHHVLy5ZspzpLispyV2t4rFaE/aLF5o7cXwLLDyDPDsv38ptvqxNvNW+zjjx5UK+Mkf93Na11+bUuwv9b8dfwAAgC/h+mKxXvhL3EJ+kljUtnsCwLYbQqZzG3qrWMz79XGyfI07g3vjyKnbz2McRKaIp6eIxLlexLhm2fgt/9fSacP1VYrP9Pz4f/UzEXwTW/xvxx8AAODWXFss+sW8JxSV08SiCoQpm2TQsltiJRMbOWeLRWVdH3X7Zoynb0kpb+H6+nWJMbH8X0unDT/YItbp+f7/PzK3VPDW13eL/4hFAAD4Uq4rFo3sToP1YmsZenuyt/g37V8oFrv1ZWxqnq/V6NpZ/q+l04YV/+z8+f9uXJVg3OI/YhEAAL6Uq4pFexG3OEJ4GKjg2JJVdHjhIE55+5SBe6dYTL4lxomn8nwl+Fn5lYslzSr604KPMp7nM3lGUcdXtO8ykSrY0lu803ONR1yz3MeRzfsTx5n2r88sqqv5tVzvfxl/AACAL+GaYtEvxmWxhIFb1BeJynW4djsCbmR32TbVG85xESnPN2cWtX/XuRbpuSOqpFbtlzg1uS91s/E68RutWuz2s93EUuYdyZb/G0h81JLPDxmbXIBlu6FDHCrBuMZ/xCIAAHwp19/g0qK/w/hOqFichY4XIu1y//H2+evjBwAAuBj3FIteUNz3vXbJLWIyUgAAAHBl7ptZvDPPcPvXFxW99nkAAAAAH+bPZhb9rga/Y7a5AeRAXB/WLVT7eTk4gPS5US29GDevT4N3zx8AAIBPcVmx6DaEzKUWhjufWczEgYrP9FUrjefmpgzgyG6AWHwzPq7WpiiT6vo8fh8yB3WKmSKwO38AAAC+iMuKRX1NSVx8w6tZDt0NrYv9VG+02KvwEGnQzByN7EJTLMI5+DmzONuXXB+3C/rn9fsKu6GbYnHx/AEAALgx97gN3csSrRQFW9BXtPQyVKZdfJ7ugYoM+ZeLRSdy07L2uUURK9nra8xXw8i/kwuvKnPatkd83OXMQuTWMa9eJeT807qhZP7FOl6MuWL6n8dwmRiLPhsli3H/+njqcQIAAPw57iAW9XZgvZDPuMfH1oqtxaigavfdsvtH2mLmqX/LfJP/+mLsSTx5gTQLVi9yZgFWvnh6ZI9sFYvRngjo6YXWyfnabhhDniEO/qlAdG2oH2szd7WPKcuuT78NAACAP8GVxaJb0F0RqZgKj4Iqq3Ug2nZPLNh2Q2R0bkNvEosFeRut/qPgGtlH1PXzaxBEpoixp4jEuV6kFLdCFp8jRFqvjdb4EYsAAAAVt7gN3XlmUTlNLKqAqLJtCS27JbxMMeLZJhZFcGX3eaVcRiwG3De9qGPSstjmOPn6den4t5pOG4uvzxF+AAAA3Jx7PLPYF4RHZOYs9NZkTyg07YvFiGe9/yFzlwiwYWbRn9DO3GX2EXX97hhk7Gqexb6RWcw4QqR12kAsAgAALOeyYjF9xq2bWTxpQVfxsCWr6CjE3JRhO0osFvGQ9mN/qX3qP/FnmT0Sjld+52JPhbw/LdQXf57P+vql18iJfxVs5nON9fnr6bWx9Poc4QcAAMDNuapY1J2ycylvY6bnOdVi2vbQy2QqI7vLpjkBou6LCOls0lkvFgWpNDUv4/ftS3HtBJHzSs55pTEa2SMtsSik/YtozOLhxFe0apGRG0I/2w0tRV9X4ze8HCHSBm10ro8XskY5YZ4BAABcnrvchq7Z+VLuC6Ficc6aepHTLkvGOxJbR4ixT3FEfAAAAGAx9xSLXjDs+rq/j/KYXzgesnfHCrdvFosAAADwVu6bWbwz4RnDUFT02udtBbEIAAAAB/FnM4vuQcGwI9bthD1ZPLk+rFuk4bnAP/U8XHwWMpZiZzLsQ+fa4X+ArID+b97/zj8mb9//Tr4+/gP77eO/k0/0r33KVZn0xRn65vJisTnQnc8sZsHVyZ8KFv9hqMo0AUZ2g/JiTvxFsZjg4nKGWKyvUb6bPs4fX/TDvS7+D/fNQtrElg+hbqJJeq82AI3sI3RspwvwaRe5L2kM9/dfXh/j8/Gx/sef//Pj34/Pvv79+Przuj//z++/z/nxDzTWp3fEP73+MgGy/s7tf+zfW+L/wd8/o9/Pbxl/SqkvuvpmI9cWi3MGqjUx3c7VLUJLgznVGwVT/ZDQNz8cI7tQXkzwuLic8cHSa9qOdz5v/DzLxWQbt4tbfjm/wm7u7nVv8HjKL7Y4ZheDvJ2RfYjWScTL4Uw+zTF7pN/Ws7N/d32mX9Dh90Da3qf7zzA+/yfHf1F8NvffFwOL5v+J/S/i5Ph7QtwtX08ef/n7ywmbN13/Rdfn7Phr+86Hz3z+h7+fzx5/ifOhEIuL9c1CriwW9YL9/PPP9+2auHvR18T0hIRplwk2/WUil/FffjHdZEzL2oklkyF7Pc302hklxkT+nVxI//Ic2SPxl2EpumL9fIx5fW/7ecmiIn7Or8UpcJPcnsjZq3XM+i3/FPXROh5t6n9yzKXty/N77StGOxmj+hF/XnuOtez99tt/3Xq/0/byxScea8ffh6s/Z7f378fVuz6f7j9DbNa1Oy/+y/zb3r+3Z59v8/dDPK887jm7/yw+UpZnV0f9x2P93z9ap7c+nTl+d34qXoqflfP6H/unnBn/S33+w/lpe8qu8XfXdyWJvUSp1BencFmxOClj48IVLJk425ELqxfKtCm23fmUTD6dOK3Jtsn/x7NaPObJ5yfjPMG0/9SfkT3i2639DvVlevqXaut56Qej9Cd8GKzxN8TidH44bv0yafunRB+luKxP8kF2fRZ1TD967Su+j/bcHNWPjNpp2Qft65ha88qNN7RpjL0ff9/vSxbK+feVISY292+MNzvn0/2nqA/vjv9C/zb379vXmPZ/Pxh+pJzYv4+P1Ek+11lmSdnc/yj+oY77OcxFKwab+18SfzlHG9B5r6KqujbCaf0v8U/Y3P8o/lf6/CvG+crm/vVYb31fpy8O45piUYMTg9f5MAbcRGpdlJ1o26O+a3trstkX0134nf7nbYwm+9oPQ0njwxEx2+p8oKpz6w9HL34jHhIc91GKfftgFW0NxmSypU6JMdZV9j7tv27D50ajX7U/ir8fd7ZYuLbq67Ot/9YvwxjrT/c/M/r9cE78l/u3rX9jXq/5TCec0//yz8Q58Vd77ksrBufF3/vwo5W1lSKrGjmn/6Xz46z4+/6v8Pk3fU3Y2n+JX7JG63s9/kO5oljUIM7B638YFRf0M8SiXoBpwhi07NYHp3Mx84mwFIlLmMBTuYpY9AMqxtqoY/brz63LUv9qshhb12LV+CODOAwJv/CbvyhG9gXouJpzS/x3U8i+VnXJ50/ulx4z4repfyWd39Ku+4adq/Qf0LZ7vx+UU+KvLPBP2dH/+PeDcV7JKf0v6DdyQvxXrU8nxV9/n00+PMKr2Fpr0TviX/iXHT84/tH+8c+/u/bpXDA4pP9QYjtWrN0xq50DuZ5Y9B8+q7QuyjaxNUb/Kuj9QmraV17M9f6HGEmd+Mshb8N/mDLf/Amh/5F9hFE/xRp/q455rh9f90O4knXxWcogDl1GYzwuBq2/bt0fWfLXuY5hjo2yxTeNhd3P+v4Nsuvz6f49o98PkePjb9CZv+v7X/r5WDb/j+9/XXyOjb+3WaXlz/HjN+zm71HPW/o/dP6Nrq9lV5+OGr9BNb7lc3Dr+PWYub6v1BeHceUNLh4fuGxiZhgT9wg0+Fuyio7iYk9b/FsfpmQiLMKPeZqo8S/LqQ1vn/pP/Flmj4Tjld+jmPt66QfJfTCqdoTGLzl/vhzPnjV8FPFu+edt3d3G3sFs/PUHv9e+siwOVn13zTvza2T3jPwL6PjLa5v+8mvFpxd/7+B03fJ4FmzoP+tLPz+l/dP9a53h9Qls6H8Y/5F/Kav79+3JgdBHmGdlG8P5Hzih/xif/FnkJCYpq/tfEP8J71s3BoePP/48zz/vb2iv5PD+l86PwOr+F8Tf1f/c5993f9bn3/fXXt/neLv+1T/9ObZ3FncXi91JsgPXbnmBE0Z2nQD+AkqRvx6eLo1tX0w/bzptWUilqXkZv29fimsnTO5Xck72TMvIHgmTsvK7/vDUSF0JwGG7oaXUbbT8EzT+rpYWibwhBPUvvlj0w7x0/P4XmVGqediPX1lmsTqyRzrjL8j/uq2vnx9TOc5+/KvdikndkrX9x+dMfSlEQTzng/0PP/8FR8d/SXxS1vWvdjk//k6Rkv5+8OcapfN7+Mj+5zplfI7qPx5rx3/GfwbTtiyOH78KiMQ707eZY/tf4l/OGfH/3Off1y9L/ft5ZvX4u+u72Ffoi8O4vlhsERf7kwP0BmReDIXCXJaMt56M6+zwdagoX/sHyZHQP/3Tv217B/T/t/s/gnuKRS92NPi9v2auy2O+RbrwL9N1IBahJv/r9v3QP/3Tv217B/T/t/vfzX0zi3cmPIMQyvF/cSAWAQAA4CD+bGZR7/3+BqWvKeKzxZPrw7qFHJ476zxvAwbvvn4AAAB/leuKRS8I05I/QLrzmcVMvGlfaYq47tuVKQM4shsgFo+le/0AAADgMK4tFsdC0O0i2iK0VGxM9UZiQwWdSJNm5mpkF5piETax6voBAADAZu4uFv15J9+C1G3snW3xtl0EpMt8ahGZWHzRt98qn5S1zy2KWGp/0XiMifw7uZB+d+bIHglZz+o61DF340nH4PzTuqFk/sU6KvFCMf3PY4gYBAAA+AC3uA3tsna9dxjJOWvF1mJUUJViKcW2+0fqYuarf8t8k/+P3heNh9hNAkz7T/0Z2SNbxWK0J9eseKHt9F6pMIY8Qxz8U4Ho2lA/EIsAAAAf4Q4bXOILMlvZwyqrdSDadi9radtrMdW7Db1JLBbkbbT6j4JrZB9R18+vQRCZIv6eIhLnepFS3ApZfAz/AAAA4DPcQSwqPUF1mlhUAVNl2xJadkt4ZWIoZ5tYFMGV3eeVchmxGJi+hkhaFtscJ1+/Lh3/AAAA4DN8g1g8IjNnobeOe4KlaT9dLIbMXSLA8jYMseVPaGfuMvuIun53DDJ2Nc+ZRCOzmIFYBAAAuAzXFYvJt5w4odUSDycJC+1zS1bRUYi5wRd9rxeLfsyT2Kq+aNzbp/4Tf5bZI+F45Xcu9jSr6E8L9fV5ymf/i9hdJlIFtflcY30+AAAAfIjLisWQjfLl5/fVyEI50dETdRsZ3doe2Z3/TkGp+yK2Ol/0vV4sClJpal7Gn3/ReBBbr+Sc6ovge/ZISywKaf9ybbJ4OHEcrVrs69f+onjEIgAAwGW4y23omp0v5b4QKhbnW7JeKLXLkvGOxBZiDAAAABZyT7Hoxc6ur/v7KMkt9pC9O1a4IRYBAADgIO6bWbwz4RnDUFT02udtBbEIAAAAB/FnM4vuQcGwY7m7geYgXB/WLeTwXOAJz11+Bel1suwj9taHbbz78wUAAOdxabE47SL2JReHO59ZzMSbis9UUHgxWpUpAziyGyAWt3F3sbhZKNVzLH/V0Mg+4vH7ePpNWKZvccNUKPUfZoP+u58vAAC4FZcVi9MiOy9AD+PbQDbvhtb2p3qjxUwFnSx9zQV/ZBeaYvGv4sXG57JN7+g//CGwqR/1rzdfRvY2bhf6j9QOu9FN3/Q1RvHzEF59VIvVTv+rPl8AAHBprioWXUKol6mb8AvZqYu+ONPN2ph2EQrzu3NkYc7FohO5aVk01gRZjLPX00yvnVFiTOTfyYVXsliP7JEodgxR0O3fU70aJ7yex11bo8zXcBZZvhT9awPGHwh62LfRrz/q3zff+MMku06d+Ah6/s8//3yqPT979fUa2e0usyt9/5Z/dnw7q8QiAAB8D9cUi35xeslC2xczHrf4rxVbi1EfBou2YXc+TYKmf8t8k//64uspHuVi7kXALOC0/9SfkT3SERvd/qMY/sleup1nhr0PQ6Hig1P0b9XVY4afZn2l0//iPnvxiZm1MJfNcXbqh/5ccVnrNHZL7EqvfaUTgwS9XV1nxZf0DwAAX8E1xWJYiFIx41Y9e9GrMz7HoW33FlPbbizCndvQXpvs8z9vo9V/vBU4sq8n778WjzWGDxYNsVdec/3Z7K9Rv99/7b/rz8hm2mj9GEvf1nCcHR4yBmmi2cbI3qZ/DVzoXOmLwe39AwDALbiyWMwXfz1mi5lSOBzGlB0ybErLbgkvd+xIsSgiZEq7hvJWsbiy/4ol5wg+OHXcsnim4qygVX/Uf1ZvneDLhet+saiM5si2ObTwGpjPLOZs6x8AAG7BlW9DLxWLZy1Ueuu4t5A27aeLRR8frROFat6GIQL8CaH/kX3EqH/r+pUsFCodv9Tk+pD/NN9V2aw/6j8Zg+9oRVZRGjZKPx59/DDac2Rkt1l4DYTRH2Tb+gcAgFtw1Q0ufpGfBVf7NuDyBW8VKu62ZBUdhZiaXgF0lFj0Y57Eh7Qf+0vtU/+JP8vskSh8Sr9H/YfrpfI4vX2pO2zj/0PbQwHlg2OLWLXJNdAMZzMj2qy/oP9QV6+dPb9a8Unx56yvn+5G1j80yjZGdmXkn7+Opm/ptTIzi0v6BwCAr+CyYlHIdtM2Npm0ReQ+RpmUkV0XUC8Qg+/mJgHPerEoSKWpeRm/b1+KayeIgFdyTtiJ7OuP7JGO2Oj278+pdkOX1ylpQ4sp3IJgs8VO8K93/Xv1h/2P2h+JMcWfs1os6vxRkysyc0rfRnaH3b4X8kZJxqnXbi4/LnObxWBR/wAA8BVcWSz22flS7guhemYWKl7ItcuS8XYyRovs4CFOAAAANxWLfhHf9XV/HyW5hdfNPG0FsXgEZ2WtAQAAbsV9M4t3JjzjF0pzc8ZmEIt7cHeutUyvbgIAAPjD/NnMolMEYWPE7R7Qf4PYu3V8AAAA4DCuKRa9GKpKloHb+cyiE0CxrvbX2VF7Od4gFm8dHwAAADiMe2QW9bk+kS6GONr8XJmKoameJYbOFmR72n+TWOzGBwAAAP4EtxCL+oqT5qs5jhdO0zNrRSn7qF7tk4opEVvTq3O0JPal7bepx6xZ1vK2fMs/7d+K5/B1QAAAAPD3uL5YFGGkQse0eZz4evMmEf+uulmA5RnOWDcRZNkLqdNz0mNLSev62/Gl+Ov65wNWxHSPPwAAAPC1XF0sqsgZCRgnhN4qFv3rbjKBlj3jF16GLOLsKSIxrxs5QizG2/NlH8v8S+252AUAAAAIXFosZs/NtXm/WPS2uhTP9U1f82d8A8YBYvFHhKIt8Bb4l2UXvXjc5gsAAAB8NVcWi3p7dYmAef9taCNz10OfX1Splp2/XyxqXTf2SjAu8S85RxshqwgAAAAWlxWLC7OK+0RXj77gctlMzdRZzyU+nr9POT75rhnGyseVgjMjbU+fWawFY9e/SMguavbz+PgBAADAV3BVsbj01vKpz9qJmFLJFUsp7LLdxlJ+4o5jd/s5s/y+LFE4aL9NKT698KwFY8O/6Ry7HgAAAMDE1Te4tNn5Uu7L4oVguxw5XivjCQAAAJBwT7HoRc6ur/uDc7OyAAAA8B3cN7MIW3GPKmqpbksDAAAAFPzZzKLfFeJfJePeQXjy7djsPYcp3/jcILe3/zzv/nwBAMB5XFcsxmcSQ/l5Fd9NvPOZxUy8qbhJ3kEYxE5Vpg03I7sBYvFiPH4fT/+VjLafg/kndRNr9YeL3uKf7eUGpyXzJ++//sOotJfzp+4j30C1tv3a3o1f9/MFAAC34qpiMX+eLixc2WJqnbcCXcymeqPFTAWdLH1N8TOyC02x+I1cWyy6XeIi/l5ht7jl53D+6WuI4nwJr0ZKxdjjKeJqsnthuWb+lP37H5P29cAkEMMfHNnnQ31qz7dF7TfsS+K37vMFAACX5tJiMVn8yp9n3iBM9BU3WVamwLTLAjtlZkQI/MvFohtPWsyxdZDFOHs9T/b8YYyJ/Du5kGbGRvZIECGJ38vqR3svO+Xj8/PS9zzKv6b//exW9mqgrH6k5X8k9lPbls8/JRdTq+3V/DH8crd14zh8e227om2sGHdWf2SPtOMHAABfxHVvQ8tCJAuiEyEukxGzFDV+HVspthajfrQWXcW2O5+SzIwXPXY7m/zXF39P4qgUI34RnwWU9p/6M7JHWmJrYfsqj+NLwVXcyhEvLGrx5MVz7GdUPzk/xMD9vNj/iO/HFjti07oyxtH809ux6R8CNaN+irouE2kdi9k5o73MPp/jistaJmJ01P6w/0hvXAAA8DVc+ZlFvTXnvv9Y17vqmayZftZnH9p2bzG07a3F3BYUm8RiQd7GSEwsERs9NrQfhJs7NhQeg/qG2OzFt43VT2Q8/1zMXdE5kPiSYfiaYM4ffzGLseS+5uJ8zsBaY3nIyWqdbKP2F/TfPgYAAF/HVcWirlfTAvt4ugW3zhx5ThOLKkA6GaWm3RJDHTHj1+a1/osISW7RunIXsTgUI4P6wV6Xpf5HrH48a+af9cyiJwjOhlB0MWvOnyI+1fVJr78cd9nN9vizOTZqf1H/Sjt+AADwRVxTLBqLkLlYebaJrTGarekthE275au1AAfW+++Fk9aJQiNvw4ifPyH0P7KP2NB+KvaGwmNQP/y/KcIWY/XTON6Zf0r9B8vYx/b8MvofXZ+B3ZuPnh+t+AEAwFdxTbEYxdCcdXGLcbVYKSctWCoOtmQVHdH/IOY086Q/m/5vEYt+zFXmqxADU/+JP8vskXC88ntZ+/k18ef4Y/7/qZDKr++ofjxfxFv2LN6juB4t/yNWP0ocT2f+pX0ZmUV3TTfPn9DfZK/jZfVfxqu3G3vU/rB/Ryt+AADwVVx5g4vewpvKtJkiJ1/UjsO1W4mn5XZdoOe7hOJ7ZxPEerEoSKWpeRm/b1+Kaycs4q/knOyZu5E90hJbC9svxIsPWfKzBKi/Gzr+HM7P6us1mPvXkrcx15Famf/u2lklm0f9+ad9z0XHMWd5o/9lqcRY95rPzyFqqXaCJ9df+6+emdT5F6zOXgm9fvs9+7L4AQDA13BdsTgiLmalkLkfKhZnIWELjbksGa8ltlJG9hF76wMAAMBtuKdY9GKlzobcheQWofy/zJjtB7EIAAAAB3HfzOKdCc8YhqKi1z5vK4hFAAAAOIg/m1n0OxD87lZjA8DhuD6sW8jhuTqe91rHu68fAADAX+W6YrF8wL4UUzufWczEm4rP9LUoXoxWZcoAjuwGiMVj6V4/AAAAOIyrikW/WzQKqCCoDDHmztsitFRsTPVGYkP7F2nSzFyN7EJTLMImVl0/AAAA2Mw1xaIXh5n4crcdLbHls3yn3oLU15RUrx5JMO0yhikzKjLxXy4Wq9ePrH1uUcSSvnJmKuarZ+TfyYVXlTlt2yNBpFdxj/XzMeb1vc1+Nc7ArtdahKBvW0V4zCIjCAEAAN7ONcViFCPJMZeZs8WC15FHbxKJqKAqxVKKbXc+TZmv/i3zTf4/non48qKuev3OJMC0/9SfkT3SF4tSIbwUW89Lr03pTxTHsZ2B3TmjIXmE475tPdwV7QAAAHA8V70NnYuXKLZUQNTnOkFxkljUtntZS9vuxVQtdkvR5XFj3el/3kar/yjoRvYRRv0Us62kzsjuVaG79um1RSwCAAB8gCtvcMlucbpvKLHFzGliUUVNlW1LaNktMeSOHSkW0/iEchWx6AdkZiMnMTiyIxYBAACuwXXFYoEpMDzedLxY1GxmUxAJTfvpYtHfxtU6UajmbRhiLovfyD5iIBZN4ZnUGdnVF8QiAADANbisWHw85ozdoydOBsJlKypotmQVHYWYU/9dEvAosejHPAknaT/2l9qn/hN/ltkj4Xjl9yjmvl4q7Jzom9oZ2BGLAAAA1+GqYvEhykDlgy+awbNFghMTPVG3kVSkWIzsKibnu+gigtxt9KPEopDER0Wrb1+KayeIuVdyTvaeypE9slUsKlJXArBnNzRiEQAA4ALc5jZ0RX+H8Z3IRVDI+jXLkvGOxNwSsQcAAAAg3FMserGz6+v+Psrj9zFl2Xz27ljhhlgEAACAg7hvZvHOhGcMQ1HRa5+3FcQiAAAAHMSfzSy6BwXDjly3O/dk8eT6sG4hh+cCVz13+QfE3ruvDwAAANh8Tiw+fh9PvwnEFgHzi7i11MJw5zOLmXhT8ZW+ysWLsapMGcCR3eDtYrH28VabQ7rXBwAAAN7GJ8Ti458s/T+v35f+KyLGEj35LmcvqCyxs3k3tIqRqd5IjGj/Il2a4mxkF5picQtLxeJR/X2AVdcHAAAATuOzt6Fbosc47m5LWuJniXDaifTdzcqZdhGQU2ZUZOK/XCw6kZuWVc8txjH3sq96zkgshqxmdV4d0+pVQSLmkq618+LVOOGPgmDO7bP/2bf0IAYBAACuxyXFopWFc8dsQeF15NGbRCLiowod06bYdv/I3ZwZ7d0yX++/j5sKrOn9kyreXDPlOVJc1tMSu1vFYrQnbaYvURe8GJZ2w/XKM8Cz//9cGz4zi1gEAAC4IJcUi149DQVMpMp6HYi2bfUZse2Gr5YADmwVi3m/XviZ8ZEOnHTrjCOnbj+PcRCZIv6eIhLnehFvz7Kt2fjb1xIAAAAuxjdkFk8Ti9rnlA0zaNktX60xBc4Wi8q6PkZiMTB9jaF+E0t5C9wqMSaN6w4AAADX4/7PLG4RW8vQW8c9QdO0f6FY7NaXsal5ziQamcUMxCIAAMBtuKZYDJms5Jm/tvg4SXiouNuSVXR4f1VcOfuUgXunWEy+JcYJ1fJ8JfhZ+ZXHW6+FPy34KON5PpNnFHV8Rfvu+qlgNp9rPOmaAQAAwPF8Qix6IWGUTHyN3rPoyUXlcbh2OwJuZHfZtui+boB5vjmzGLJ9vkjPptBuiUVBnJrcl7rZeJ34jVYtdvvZbmgp+rokv+EFsQgAAHAbPptZ3MPOl3JfCBWLc9bUC6l2uf94AQAA4EbcUyx6QbXr6/4+SnKLuMwIAgAAAFyJ+2YW78wz3P71RUWvfR4AAADAh0EsAgAAAECTtlh8/D6efpOGdYtUNzzMybFyg0PjubtVGbRlG1za7K/fG/8ipl3QvmQ+uA0vc8n9WxK/cnzHb/K5LkfMLwAAAFiEJRbdLtaflwjA9jd/PJ4iboavZonoc3kiKFeIrnyXc/4qlyXsqb9k/EOmmMx9PtJvO9HXyEzxC89gNv2r4+d3J+fjkxMm+99i/fwCAACAhfRvQ3sRM16EB2JMX8OyQuiZ/fr3yyzcCby3fmQ0/iDSjHZ9d0vF29r4+fNb41Ox+/q3NpNakL76R8v02puZ6tU4aXbT1U+sWf0Y173Z30AVHwAAADiMY8Ri7zyxqVCojndwWbmijjtmf91fxd76E1vFYhBzItgmLSQxaPWtt7srfyes+Bl+ZeMTEeaEnLS6STTG9hMBNr1Q2+Mym9pfM3P6TMRhKYZ9+1p/6kP878e6hRUfAAAAOIz9YrGfFVNRsVoAmFnAJb4E9taf2FJH8fXmbJqKNxVXuU/OTVcS0VTQip+rm9xmjxm6/Fx/fL1oDCJY2n+mArCwr8nm+UsSM61WXIPAXhnrTfMLAAAAlrNPLOoCL1KkJRo027Xl21X2Zgb31p/YJxbzuOixRv+tZxa78ZPYz2nL338uO9lqP95SjuJ1IdMGHWk5u0W8JC6pf6EcLRa78QEAAIBD2C4W/eLeyy5pVmu90FKMfs1sYYu99SNLRJGFFRttqy1W/YaV/BnHVfEzx7c1s1igYlNan8czuvberuOJfZ6RWdw+vwAAAGAxW8WiW/x7WZ1h1se3La2bAs6Jp6l+S3ydVz89py1Igiiy2vABmsRh7o+QPgNoZRZH8TPqz37ufGZRnzd89toP49H2zecai/FIfXf6kWKRrCIAAMB7sMSiFwJGmRZnv9iXJRU7ro0iU5YT22iJtfk5PC31Ttnz6o/HH+mIRSHbLVxswlDbXMrbvOP4PUSMJqOTU9PY79wNreIw3cms7WdC21Pthk7jk/inx5/xvZJuTD72e8TieH4BAADAIfQziwAAAADwp0EsAgAAAEATxCIAAAAANNkmFv0zZ5u/cUNJN4DoZoXqGbYBe+sDAAAAwJi2WHy4bxbRPSK2CIsbSFobTAY4gRfrqvgsXysz2KAyrA8AAAAAu7HEotvl+qM7av2O1l7Gzu1K3fIKk+zVJ7XYy9s1Xn0zqA8AAAAAB9C/De1vN/dv7y45Zy1Gm+6288YsJgAAAABsY79YLL+d4wCyW8zpMbKHAAAAAG/lCLF4+AuSzSziGRlMAAAAAOhySbFIZhEAAADgGlzyNrTVL88sAgAAALyfa25wWbAbGgAAAADOxxKLTqhZxXhFTi7qjmTwnkUAAAAAOJ9+ZrHHzpdyAwAAAMD12SYW/a1nsn0AAAAAX872zCIAAAAAfD3XzCwe0L7bPR1eteNeu3P8JpwM63U/Dr8555znOuGyvHv+AQAAnEVLLOrGlWR7ye+r2om895nFx+/j+e9Xm7AX0Z3tZ+JNxWf6jkYvRqsyvf5nZDdALH4fD5kH84eg+OOlniPVd5dP86GcfwAAADeiKRafsjDGxa2TGdmyG/rxT5bOn5cIUF1CW2LRs3m3tfo81Rst1iroZGlv+jGyC02xCLdkmvOzAHw80j+YdE51rveq+QcAAHBhlt2G7r3n0GdYukKqyZK6e9pfyFOW8t47HE27xGRKO4lM/JeLxer1Q72spIWIjZcI1KmIuH4WmdGXCPrZhVeVOW3bIyHrmfjt0FuoInT8+FQkxyxvLnic6NfqWjL/BOd/sGnZZE9OKO1V/NWXfBxd/xyN8QvuLnL3mmmM63oAAABfxzKxGMWHZdvzDS79diPb21+CCqreom/bnU9T5qh/y3yT/49nIm5Kse7jNgsg7T/1Z2SPdMSiHhWR6EWvF4l6OPrgj8f2w89F/2lW7r+HtBX/P7Trz73xW/GXn5Nx9P2LtMSiP/76p9de7VIklrnYDjHW4rLOyVgAAAC+ibFYrBfqErcQnygWt7c/Rtvu9W/bDb/1tmMlOjxOyOz0P2+j1X/M/I3sA7wqdMIqjb0/rPPAmBPZ+IMIkzae2a3byMhes2z8ef9t/0b49jOx7Ry26z/EOWet5gkAAMAX0BeLuuiKxOgIReW2YlEFRJVtSmjZnfAohFdHjORCZykS++w+rZShWHqXWAxiqiplTOQ8NwTpWdqo49izd8Y/jP9C/5r4+vm812Pt+tuuMQAAwA1oi0UjO9Ng+0LpF+WRWDxrIdZbx72+m/ahWMlZ77+PvdaJAipvw4ibPyETS237AD23KxaXzw2HxEZ7b55f2QfjH8Z/pX8VVn3EIgAA/FFaYtEtfr2s28QywWezpO6e9juouNiSVXQUYmbKkB0lFv2YJ7Ei7cf+UvvUf+LPMnskHC/99qrQ1bXFYjiu4sl67lCfN9TnHafjxTUc2YfjH8e/699EY/yK/wBM4tC1l80HaSsKRydUU/8BAAC+CFssBrFRFCtTUy+iY/xCbhSjnS3tL8G1W4mn5XYVCNNdUn227ZlmtnLWi0VBKk3Ny/h9+1JcO0FcvZJzXmmMRvbIdrGoZLuNpejrkNwzfk68ZZb8PZ0ju9Idf2zDmeUEO/5N/6ZzOmJRqHZTp3a9/sFk+g8AAPAtjDe4tOjvAN7P2e2/j1xkeSHXLkvGG8RgM5M1sn8hicA17QAAALCNbWLRi5FLf93fR0luUYbs1bHCDbGY31Keb0tX5wEAAMA+tmcWoU14xi4UFb32eVtBLMbX1cRy3z8sAAAALs41xeIBmUW9LSlywm1QeMcGBNeHdQs5ZL24RXoh3iCm3z3/AAAAzuJTYlE3TsyZIWuDwM5nFjPxpuJg3tkaxUJVpgzgyG6AWLwRbxCL3fkHAABwIz4mFp/PRa8e2bwbWtuc6o0WaxV0srQ3xcPILjTFIpzDHsH3JrG4eP4BAABcmGvchvbZN+vVPG9Z2PX5t96rT0y7+Dy/u+X39S8Xi07kpmXtc4siNrLXy2SvfYkxkX8nF9LvLh7ZIyHrmfid15+PVa8Scv5p3VCq19JoHZVIoZj+5zFcKqbcHV6j5HPEt/3zerk45q/NqcenWezysYcl/vvsty88NwkAAF/JNcRivXinOHGwVmwtRvpWIWDaFNvuH0mLmaP+LfNN/j+eiTgpxbSP1yxgtP/Un5E9slUsRnsioIsXXnuxHPsPP5f+qUB0bagfazNvtY8zZbwSf9zPaV1/7co/Bpb6P8VAxfPUJgAAwBfxebFYL+wlbqE+SSxq270F3rYbQqVzG/oIsZu30eo/Cq6RfURdP78GQWSKeHqKSJzrRYxrmsXH8G81nTbMsabnx/97kZqJXscW/32dfWMCAAC4IJ8Vi36x7glF5TSxqAKgyrYltOyWGMnERM42sSixSW5xunIZsRiYvkVFWhbbHCdfvy4d/1bTacMHvLgW6fn+/z96m9+8/lv8RywCAMCX8jmxaGRvGhyRmbPQ24+9xb1pP10s+thonShkhpnFTCCN7CPq+t0xyNjVPF/L0bW1xNZaOm2Ywjg9f/6/G1clGLf4j1gEAIAv5VNi0V6kLY4QFgYqKLZkFR2FmJsybEeJRT/mSaxI+7G/1D71n/izzB4Jxyu//fHYv2YV/Wmhvj5P+UyeUdTxO3OsHzKRKtjSW7zTc431+evJfRzZvD+WmLaf51zvv+/z8HkKAADwaT4jFoOYKYq18LtFe5GoXIdrtxJPy+0um6Z6wjkuIuR5ZGZRkEpT8zJ+374U104QK6/knFcao5E90hKLQtq/XJcsHk4cR6sWGbl57ZLdxFLmHcmW2NpA4qOWfP7I2OQCLdsNHeJQCcY1/iMWAQDgS/n8BpcW/R3Gd0LF4ixkvNBolyXjHYmtg8TYRzgiPgAAAHAY1xSLXjDc9711j/mF46dknL5ZLAIAAMCluG5m8c6EZwxDUdFrn7cVxCIAAAC8CcQiAAAAANj89/v/rPKnQEdisiIAAAAASUVORK5CYII=" alt="" />
     第一次迭代使用 0 作为游标, 表示开始一次新的迭代,第二次使用的是第一次迭代时返回的游标。
     scan命令的回复是一个包含两个元素的数组, 第一个数组元素是用于进行下一次迭代的新游标, 而第二个数组元素则是一个数组, 这个数组中包含了所有被迭代的元素.
     在第二次调用scan命令时,命令返回了游标0,表示迭代已经结束,整个数据集已经遍历完了。
     以0作为游标开始一次新的迭代,一直调用scan命令,知道游标返回0,我们称这个过程为一次完整遍历
match用法
    和keys命令一样,增量式迭代命令也可以通过提供一个glob风格的模式参数,让命令只返回和给定模式相匹配的元素,这一点可以在执行增量式迭代命令时,通过给定MATCH<pattern>参数来实现
    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAkgAAABxCAYAAAAu9FzjAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABqhSURBVHhe7Z2LcSQpDIY3rgloqi4bh3BROBkncRnMSQhoHkKCpscez/5UfbXrpgEhXn/Tj/nz33//Pf7999/HP//88/jz5w8A4Fu4Pz4fj8fnXYtb4fb4+KKMvj4eNzX+Qm4fjy+y+t7FfaMNv5E7t/TX4+OmxM2wm/5HQd8AvxhbIN0et/vH45M6uDaR36jnc9+XQFPnx62IlwWgC5/34hyP2+POhcfwRWnXBtl+eqv+U9zID4cJtQ2UdxHV2Dfjv7Z+f9sktNu+P8lVAukP+SBk1Bz3+s+J8QmBdI7fLpBCu4/7Kpv3Vc39fbzZr94dx3/ghRkJpNvH5+Pr65NED/07aNzbnRakNGjdTsCTKE2vC52EBdgx6cokbA3Elp30M/V3yT45yrzdivLp/4f/ZMEa29f7L9Qvi6K4SP1FE9Fu/9hnR+RcJ5DChYpb777/rMUTQ4H0t3JdG57jO8qP84pSzp3mxg+a27j/8Rx3IyVUXyQLc/3zFbnCv2P/gV+Af4tttpM4CxQNnrVBopQrlyKTE/Ru+oRX/zQA+nzXrpxW/Sfnj+rHAu/zY3NHhRbEcvfrQYLx3lzFBiEZozlUu1ghfRFbpU9+PbsLtNm+fC6Jq49QtkzwYkdxpW7YH4pSQttPxv7Zrf8iXf9pUOOpj2XbyEcftUAKArUMq+J8qn/Qv9kEWpCn4xPj8WmXL4zaz2//VG4KTfmx/7VtzYclDzu9V75k37d3aLOqnQz/ECJu7v1cQ+nC7jr5I/gs/9/oYycw5xe2nRr/65PmOmpHvqDt+0/6u617itfHn9++c4z9B34F1wkk6zyexPQBOIQmr+5qNRyb3GreTZ/x6j+aYOQ4ixR7Ahd4sunszWj+U+yq6kcDP0wuvLCdWXRT/sWExztexTmyQFJ5xTn1Dtm9mLDEH8ekLflz+lwG2W/7umC3feMMyGXnelC6amEx7WeUNiiw/bNZ/yWoLHP86fHBRcUOnSwkej7h3GWBNNE/2K5wDpdf2uPFJ0bjk3Da1+3f0Qa3vcQ5TflaWj6m2KmmZ4zyp8u0/EPjKfhTztHKOQTA5LhbwPb/qL1SPfq6hvhGIHH+4/Fn+HeGCf+BF+cagdR31hLumMudY3qAD9hNnzk7SCRdNYFXA1gIZoZQDNSGkf9C2m4Ba22V4+tCKU6clL9+VWi3uYY0SXsFV56zMJFc0T+i78qJUw7rdartZ6zyPP9s1n8Bb/zp8Yp9QYC2Phd636xT5zEqPy3EXvw6dfkz/dtq/wLJuPNb2e/S32p5g/R2+b39obw8X3hw+uTLQb/kxwKSsCYbr939dPyvtnXpj943tb8137X1tPzrMeE/8PrsCyTpCGZHnh6UBdpkvDIB7qbPnB0kkq72Cx8blM+TTXc+H7f8R74/tqfoSsuoH+Ujp5JPVuofJkHJv54AZ/xS2hfD0gRlsNu+vOi4Asmyn7F84Plns/6zmP2HGMVrvtR8HpE1vPTNDIv9o7LJi59htX+2zJxDjARO5U9u+4Hto/Re+VW6tb5Vi7Un9EuXlbolyjR9+u8USD/vP3AJewJJGr5b1At49+Jcx1DKHU4UGrvpE2cHieYbzms8gdcDWFjyn1q/sztIDTSZc+7toB+3vcRzfVKZYt7KBGWx2b58rimQPPsZq294/tmt/xxe/xnGa2KjWtBret94nOgfckIsf7P93fK99mOs9i8w7OKoUAb9hy9A2vjAML1XflEHKSjX1Sb6Rgm2P67E8b8qhkt/9L4RNxr9K5Z5HJts345X8B+4hB2BFDrcmavTjORNuauTR1i4cnptwDw3fXnOeJCkwaDkIQ7Kg7i2h7gVz/RoO0ie/5T0h518S2/jGSTK73638o/14fzLW4PZpqY+lD6cvjRB2fjta1AsGCGfaJcc5jw8+xm7zBn/7NTfxe0/Vnzs11TfEM/tz3+T1dpYqRefGeb6Ry6/sGcuPhGPd3Z75Xvtx0jeo/bPiHP0OSb2Q97JGl04jdNPlB/Tctvp/WrknxI557J+OYnt/77ucn6qRx3PcRx7tK+0vz3++jLO8TP+AxcwEkjS2ZSQJ9Q4QTWh67DdhFWS8hgNzuO5Gg79Pe7npffrn5DOP7KhegujeRCW445AA7ixz/Mfv1Zb1I5OLX2/+RZbWBBLH1D+ykTRvWVS+qewj4/f03efQp3E9/YE5eG1r0FcmPj80s9yONbTtP/I57CgSBsZ++eK+tu4/ceJZwGV3ct913iRgP1m5qVh+jf657M4p3qDyYtPGONzon3N/t3kwUFdTMU5qt+yfW2+JVZ6t3wvf8M/mWv75Qq2/8ku6qD6W2xE2b7kl7q/T46/mfZ1+Tn/gU38HSQAALDhNfxYPGTxGQdrMU5oC1iJFw8E+AmA00AgAQDWoSvyfLX+jCtkCKQrCLsm1u4UAGAMBBIAYJ34zE4MwweMTwOBtEO4K8ehve0EAJjnvECSCWrpuY+WMIrjw4n8wCj9tTTh7aYHAAAAANCwBdJNPic/3D5PD8nOPFOgEERNSsuCS3mTI789I6ESZDPpAQAAAABWGQmk8PbAF78JJU/xWzszp+9zs8DJ6RSBk3eFjjcH6p+ycNIDAAAAAJzBv8XGwsO7dTVzzjrhDtrlzzYAAAAAADhcI5CeIWbimzEfVH66xfY1/rFXAAAAAIDLuEoguR+dW0bKPd7C4C9Dhxtu5553AgAAAACY5dUFUv3lUj6G54wAAAAA8GRe/RYbBBIAAAAAvp1Xfki7+s4R/Y2vwgIAAADgWxgJpCBGtKAIlGcKl+rHCvl5JOUcAAAAAIBL8XeQLDY/FAkAAAAA8IqcF0hyW23rp0YAAAAAAF6RvR0kAAAAAIA35HV2kG6Pj7e6XSdv4R3BePuueRgdzIAdTAAAAE/EEkj88PWxxn89PqtX7pmLnkGKv7n2totdqB8E0vXgGTgAAABPwhRIdxIsadHOPxxbnxPO23qLTfve0XfxpM8TtHgC6TTfZP+PMVc/fP4BAADA5czfYrOEzMZCLV+YHO4AdK/5J5HB6WhRlNtyX1R22k1IQiTZRP+mDIrfcgvFKiHVQbLv6xoW49UPYqoCqb0Fp/iA0mXbORT19+yfQ25rfn1+Ujn0b+nf7D85R8KiyDPsT4zad61+G/0PAAAA0JgXSPYiFBa0VeFAWOmCGGHhEBfNaqcgrqC8gMt5snjzYRE2Yu+x6LKA4r/LnQajTmJYI1pOLsTeDpJZViHSblRX9Zzy2Cy94M3+Dn9H/7HdwQY+f0Ug+fab7RuYr5+48MovuQMAAPirmRNI/WLaEha3kwJJz1cpMwiNuIBLwrCYlmUf+SmLaydUrAV4ICCqBXySUwJJyufy7iQsqvMz8wKiQ7WpzG8j74Bnv9O+gXkbzvY/AAAAQMUXSLyQ0VKqipiD6wWSLI59iIv60wUSUQkXWdBPCYZTAilyIxupXK53/xD7vIDoUMss89vIu2Rov+Tfh4X2KYBAAgAAcCm2QFKu8gfIentOIOnpnLI54apA6kSBtwAXNhTl6eca7AikBOXBZ9X+mBcQHapNZX4beWt09s/0rXkbxIUQSAAAAC7CEkhh0ZkSBRuLqSEOgvDhRVx7jqUQLJZA4uNivyzI9SI6sUhH+3gX5LRYOCOQbvfHnZ+vKv4OZ1U2zIiMEX1a8XeyY1MgTdhvtm9gtn6btgIAAAAtY4EUBUYTtMUqLHRnd1ecRbB6y4lCftNqUiB9fh7pvz4VGylBlX9nh9h3vn7ESYHEb5YdQfsOFeHab0F1I+Vnv8VWnr/ApP3D9k3nTNRvr/8BAAAACnMPaY+46kORshhf+6HIzQU+c1U+4HrwoUgAAABP4rxAulrUyG7GdYvdNcIGuxOvyjNENQAAABDZ20F6ZfYEUrjrxaG95QMAAACA9+d9BRIAr8xVt24veEZulvAsnbbD+402/EbC1ZbxDKLHbvofBX0D/GJsgXR73O7ycxHaRM63n7jvS2gfwpUFoAvVW2Qe6RkTCeu3U/bTW/WfIjysHA2gUNlAeRdRjX0z/mvr9xdOQpZ/X5qrBNLoEwde/5npXw0QSOf47QIptPu4r7J51sshev/8i3D8B16YkUAKbxd9fZLokbeIVIE0+WO2Ak+iNL0udJL6+R+ZhFfe0tpJP1N/l+yTo8xb+VVpfqU9+08WrLF9vf9C/bIoiovU3zQRef59Ojsi5zqBFC5U3H7tjT8vngj+xgPxB9e14Tm+o/w4ryjl3Glu5E90cP8LP/lESkh/U3Wmf74iV/h37D/wC/Bvsc12EukIw4FAg2dtkCjlyqXI5AS9mz7h1T8NgD7ftSunVf/J+aP6scD7/NjcTaEFsdydeSjPY3Wv6Ze7WCF9EVulT349v8u35t8GTkziefxjx4RhfyhbCW0/Gftnv/5LdP2nQY2nPpZtIx991AIpCPQyrLbFVP+gf7MJx49N+/GJ8fi0yxdG7ee3fyo3hab82P/atubDkoed3itfsu/bWy6qynYy/EOIuLn3cw2lC7vr5I/gs/x/o4+dwJxf2HZq/NnPlNR1T/H6+PPbd46x/8Cv4DqBZJ3Hk5g+AIfQ5NVdrYZjk1vNu+kzXv1HE4wcZ5FiT+ACTzadvRnNf4pdVf1o4IfJhRe2M4tuyr+Y8KqPOMYJh8srzql3yO7FhCX+OCZtyZ/T5zLIftvXJWv+7YgzIJed60Fpq4XFtJ9R2qDA9s9u/VdgH436FqPHBxcVO7CykOj5hHOXBdJE/2C7wjlcfmmPF5+QfFW7nfZ1+3e0wW0vcY4/fsMxxU41PWOUP12m5R+aT4I/5RytnEMApHnnOmz/j9or1aOva4hvBBLnPx5/hn9nmPAfeHGuEUh9Zy3hjrncOaYH+IDd9Jmzg0TSVRN4NYCFYGYIxUBtGPkvpO0WsNZWOb4ulOLESflP/9isgzRJewVXnrMykcz5dwgbE31XTpxyWK9TbT9j9Q3PP7v1n8cbf3q8Yh9P+AP/9r5Zx+0fofy0EHvx69Tlz/Rvq/0LJOPOb2W/S3+r5Q3S2+X39ofy8nzhwemTLwf9kh8LSMKabLx299Pxv9rWpT9639T+1nzX1tPyr8eE/8Drsy+QpCOYHXl6UBZok/HKBLibPnN2kEi62i98bFA+Tzbd+Xzc8h/5/tg+oSsto36Uj5xKPlmpf5gEJf96ApzxS2lfDEsTlIXmLz422b686LgCybKfsXzg+We3/pOY/YcYxWtjJRzTFuqzAmmxf1Q2efEzrPbPlplziJHAqfzJbT+wfZTeK79Kt9a3arH2hH7pslK3RJmmT/+dAunn/QcuYU8gScN3i3oB716c6xhKucOJQmM3feLsINF8w3mNJ/B6AAtL/lPrd3YHqYEmc869HfTjtpd4rk8qU8xbmaAs1v1bwcaYAsmzn7H6huef3frP4fWfYbwmNqoFvab3jYfnX8U/ckIs34v38Mr32o+x2r/AsIujQhn0H74AaeMDw/Re+UUdpKBcV5voGyXY/rgSx/+qGC790ftG3Gj0r1jmcWyyfTtewX/gEnYEUuhwZ65OM5I35a5OHmHhyum1AfPc9OU540GSBoOShzgoD+LaHuJWPNOj7SB5/lPSH3byLSeWCyeFEeU3+2Oz1a3BbFNTH0ofTl+aoBw8/1oUC0ZIF+2Sw2yzZz+j9amDGf9s1d/D7T9WfOzXVN8Qz+3Pf5PV2lgJTVH5xmOuf+TyC3vm4hPxeGe3V77XfozkPWr/jDhHn2NiP+SdrKGwH6afKD+m5bbT+9XIPyVyzmX9chLb/33d5fxUjzqe4zj2aF9pf3v89WWc42f8By5gJJCksykhT6hxgmpC12G7Cask5TEanMdzNRz6e9zPS+/XPyGdf2RD9RZGul9fxB2BBnBjn+c/fq22qB2dWvp+8y22sCCWPqD8lYmie8uk9E9hHx+/p+8+hTqJ7+0Jysfyr0lcmNjW0s9yONbTtP/IJ5dPoZ1Mx/65pv4Wbv9x4llA5eHDvjVeJGC/mXlpmP6N/hn+2LQXnzDG50T7mv27yYODupiKcwZ9M9rX5ltipXfL9/I3/JO5tl+uYPuf7KIOqr/FRpTtS36p+/vk+JtpX5ef8x/YxN9BAgAAG17Dj8VDFp9xsBbjhLaAlXjxQICfADgNBBIAYB26Is9X68+4QoZAuoKwa2LtTgEAxkAgAQDWic/sxDB8wPg0EEg7hLtyHNrbTgCAec4LJJmg+ud6FgijOD6cyA+M0l+XTnjPzh8AAAAA74ktkG7yOfnh9nl6CHrmmQKFIFpSWhZc9ZscvD18XKRqDwk79jn5AwAAAACojARSeHvgi9+Ekqf4rZ2X0/e5WcDkdIpAMn4Md8o+J38AAAAAABX/FpvcSrME0tw5u8iDoP1rlt9RNgAAAAD+Kq4RSCe/g7LEyA4IJAAAAABczFUCyf3o3Baj3SMGAgkAAAAAF/P6AonF0ddAHDEQSAAAAAC4mNe+xWbtHCUgkAAAAABwMa/8kLZ8xsh7Ow4CCQAAAAAXMxJI4ZaZFhTBcvo1fxMRPm1Iu0kr9gEAAAAALOHvIFlsfigSAAAAAOAVOS+QZIdn66dGAAAAAABekb0dJAAAAACAN+R1d5AuyP+7f6y2+u23EnkbD89HDSjbSYv32E0PzvHd4wsAAL4TSyDxg9DHo9D6j8XuPYP0kz+Gqz8EToZMxitAIJ3jtwuk0+Kg72P1Jy28eA9nfFEc251CfzHilG+OLwAA+OWYAsn4sdjqvBNvsb3Cj+HWyAcpx3Z48cRQIP2tyAJr+uypfEf5UfyeKofts/qLFz9m7secSUDl8S2+6gWaUf7S+AIAgF/G/C02WQj0K1iZXM8tRDNpd/Kf5E7Tu3V1rsaTT8IOFweSRh+1QOo+RWDtPmnQAvRJoiwHWvDueQFKPqF/swmfxQLlxSfSAq8shGb5QliIYzSHr09ZMMOmjhKONjyEhYSmfM5AEcV8WPKw03vlS/Z9e4c2q9rJ8A8Rdlk/7uEcvX9a6bmN9Hzn4hnbvvmxI/ksCSQAAHhn5gWSPdGGBWlVAATmJvDz+c9ANvDir8YxenywKS/i9u3AU/bTVf0hSNoFTPx2iBYuv7THi08YC6xZfhKAX4+Pe3Hs1i6wftvKLbK2fC0tH1PsVNMzRvnTZVr+STsoco5eTyN9LC+EsDtZ+m4mnrHyZwwfFPCtuH73c6Z8AAB4U+YEUr84tvRX3rNMTuCn8/fhvK3y9XjFbuMWm6zHe/bXeYzKT7c5vPh16vL9PjHbtiOB07Y5/62WN0hvl9/bH8pTdq10OH3ypeTl1tPgRnWgLIZ5ePFj7DYIrgvBFkDnywcAgF+KL5BkIbAXwri4nBIAc4vo+fwd8i6AEseM4jWxEY5dKZDI9/n+WAw5D08AefEzLJbfMde2Q4FT+bMUJA2j9F75Vbo1kVOLtbW0I7w+cq4PTbaB+gxSzbnyAQDgl2ILJJn4PXHEnJ885ybwZ03OfFvMKnsY/3SBJL7nNEmc1XkofpMTYvlevIdX/kzfmFycDbs4KpRB/+G3rNr4wDC9V35RByloYfeIMlbCzFgZIdUY9xEvXmeyDQjvIuRc+QAA8EuxBFKYEKcWjflJuGcm7U7+BixozuweBRoBwVfgYdG8SiBJnfOCS/mn8sr4XH5hz1x8Ii32rd1e+XFBZUlY3prhN6PS/2PermgQ5+jCjeOoDXgna7jzNUw/UX5My22n96+Rf0rknPX05VtkLK7bPLx4xrNP2lG1rWwrdQdppnwAAHhTxgIpLrBN0BabsFBOX30LsrgqQcnnTP4zeFfMXjwvGiKK2G5aoNQHXYV1gURQopw91V/ypxDyiQvfZ3FOfINM0nvxCWOBNcuXc7q32Np2KvLgoIqVKFL0BT7aZ7W/ld4t38vfEyCMnLMskLj/cFQI1HNa27z4gJ7/zPjitjvCV9ihq3wwVT4AALwpcw9pj9j9UKTHs/P/PngNPxZnXXweYaa+UQANr+i9eCDATwAAABTOCyRZWF76p0Z+lOL2RLzKv3YRhkC6gmftTgIAAPjl7O0ggTHxmZ0Yhg8YnwYCaYdwV45D/k4UAAAAUACBBDS8oKUBAAAA3gZbIN3CF3ZHb/jw7Yljk6R9iFN2MLqwtJOSnkGSsH67bT+9/WO6E+S32yRUNqSHnmOo7ZvxX1u/624VeUFLAwAAALwNI4E082OXsz9mK/BzOCSiFoRG/XyIPMejvgU1YCf91I99emSfHGVWP8Xh/lhoSe+/UL8siqR+dEKO38ELWhoAAADgbfBvsc0+y+IIEH7dekHcqOVar3N37KZPePWPwkTJV4qbFSyr/pPzR/Vjgff5sbpjduAFLQ0AAADwNlwnkKzzKI4fhu2OG4TdlyZNODb5Uxm76TNnBVIUMCRS8l0w8sGobP3HQhOa/xS7qvrdHvew+0W5nhBKXtDSAAAAAG/DNQLJ3v3gW0G+wGpQd3tmbInsps+cScNIOhZF+df0g5KqbQpmhsA+WvNfSFvcQkzPI9XnyvFVoeQFLQ0AAADwNuwLJBZHtPyObg3xrsaZ78zs7gDtps/sCaTaL3xsUP7oGSTTf+T7Y3vq8RF2oUb5y8PmQaBN1N8LWhoAAADgbdgTSPbOEcO7F+viglHKVXeFRuymT1j1t9B8w3mNBZo8dF0/s7TkP7V+2EECAAAAltkRSPUtHgVz94ORvEeixX8L7bnpy3PGIkXyVfMQB2VBVNtDeD8W6vlPSX/YiWeQAAAAgNOMBFJYzLWQF+wkLupQLvDajkiNJ1CO52o49N8xel56v/4JQyAR1Y+5Ng9aez8W6vnvRgKsqB2dWvoeb7EBAAAAp/F3kMDfiBe0NAAAAMDbAIEENLygpQEAAADeBggkoOEFLQ0AAADwNkAgAQAAAAA0QCABAAAAADRAIAEAAAAANEAgAQAAAAA0QCABAAAAADRAIAEAAAAANEAgAQAAAAA0QCABAAAAADRAIAEAAAAANEAgAQAAAAA0QCABAAAAADRAIAEAAAAANEAgAQAAAAA0QCABAAAAADRAIAEAAAAANEAgAQAAAAA0QCABAAAAADRAIAEAAAAANEAgAQAAAAA0QCABAAAAADRAIAEAAAAANEAgAQAAAACU/Hn8Dw5JGvK2yJuMAAAAAElFTkSuQmCC" alt="" />
    数据量比较少,所以加count限制扫描的元素,第一次没有匹配到,所以是空的list,第二次迭代就找到对应的值了
COUNT
    虽然增量式迭代不保证每次迭代所返回的元素数量,但我们可以使用count选项,count选项的作用是让用户告知迭代命令,在每次迭代中应该从数据集里返回多少元素
虽然 COUNT 选项只是对增量式迭代命令的一种提示(hint), 但是在大多数情况下, 这种提示都是有效的。
  • COUNT 参数的默认值为 10 。
  • 在迭代一个足够大的、由哈希表实现的数据库、集合键、哈希键或者有序集合键时, 如果用户没有使用 MATCH 选项, 那么命令返回的元素数量通常和 COUNT 选项指定的一样, 或者比 COUNT 选项指定的数量稍多一些。
  • 在迭代一个编码为整数集合(intset,一个只由整数值构成的小集合)、 或者编码为压缩列表(ziplist,由不同值构成的一个小哈希或者一个小有序集合)时, 增量式迭代命令通常会无视 COUNT 选项指定的值, 在第一次迭代就将数据集包含的所有元素都返回给用户。
用户可以在每次迭代中按自己的需要随意改变 COUNT 值, 只要记得将上次迭代返回的游标用到下次迭代里面就可以了。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqcAAAEJCAYAAACpG44HAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEbGSURBVHhe7Z2Jkess00bfuByQq75sbgh/FE5mgpmfZhNLs2izJc+h6tS9IwQ0DbIet0D+7//+7/9+//e///3+999/K3j+vn5/f39ez9+Hmr+Xs+s/m8fv47H8/9/P7+/rmebvxfmnXecoH4SHDMzPv5vOMQAAgC9lmziFPk8rSEMSka2ftxXE6R6e4hxJP6/fZ/wSAQAAAJcAcQoAAAAAl6EtTh+/j+e/31fjkbQ8El2Cgz+/r3+PJN9F7qq0KoL4+H1K4z6tf8S/v3yv/1M8jB8WE3IbTN1JVmHfjP/K/v21x9N7x/fu1HPkJ7sGAQAAboomTh//Xr8/Py8jOM2/5qanitOnEQPhkejDCa22iJN1l0bArhB5+XpAt25zzc13T/mZ/g+JPlnafDyS9s3/F/85odG2r/af7V8UpK5/5oSY/+3snR+fx435prllkfKv36eaBwAAcGP6j/Vnb6ADcfA0Im+VcFDatQsFZ2/Ge8sHRv33olCp1zU3KxbX+s+d3+qfiOvXv52RRCOu06jvr7I+04p4ny0pi97a8kluVj74dWv085jx7dovPja2/byML00/5MtKbX/4O3xZCOPd7581VUnteaYhbazrLwAAwC04Rpz2zjN5cmOvjnewUceijD328/uvEEgqe8tHRv1viVMvHo1AjNrE+KDVtiwfqOyNaP5T7Mr6Z0SRFV6m1k0iNdSfCGKJ9CbnWDEm7TUjw89EzJXi29Uv5WMbxv6+rxMOGN++/aW94fzQZu1/TZz2+6eM4SpCGybZqPpiKwAAwK3ZL07rG3mK3LRX34DVKNiKm/ne8pGtAsILhxhtE7GYihvHEkFri4uW/2zZ5LF2iNDl57rj60WqF92m/mcqOIv8ZqRXwQ1JGVlMz3F1Tvl69/gO7FeFblp/3ZYmTvv9W2Nvn4fxh6n6kLoAAAA+zj5xKjdccxvv3eSjgFrB3sjY3vKRrQLClcv9Isca7bfWnHb9Z3y/hGV//9noa6v+8Ig+iOVJ4oYuU7N/JO3yZvyS2ufTUeJ09/gO7B+K37r8J8WpkIt/AACAG7NdnLqbbS96JlG7bTdfpV1VMLTYWz6wVUBovpG62uIpFzeOVf5T+7c1clog4tbUvvRnNPYuX/oT2szFk+bXUrz12Du+A/tVoZu2Wbe/vn/aOdvJ2wcAALgxW8WpvRn2oqJyg+9GTV3dpnZVUFixFstrYuLc8uk5bQHh6lXrcA6KAie3x5Cu4dQipyP/KeUXO3euOZX1os9e/b4/Un+6HCHaVPTHlLenHyZOZ8a3T9/+uj53fhjnPF/yJHdd/9bbnGNsDeLZiul53wEAAFwaTZy6G7GSohhwN98yVTfzbiQn1NESh8s6Skn1Tu7zyo/7H3ACo2VDthu82NQkeUsy4qawb+S/sM7QpVxk7d6tL2I03Wkv9SsiqtrtnvonsU+OP8N7XW2fnO/3iNPx+I7p2i/2SNRZ3a1vSPtnfJOP12T/sjF09SznD/DRbJf08QEAALgl/cgpAAAAAMAbQZwCAAAAwGVAnAIAAADAZdgmTt2aui3r/CLphqEtGzr2lgcAAACA69EWpw/7y0Wy50QXfWFDSmtD0gArKENZEbvlq3vKDS/FZqRheQAAAAC4HZo4tbuYf2THt9tN3ItI2l3K1S72CURcxnK1uHS7n0O+3xWf7l4flAcAAACAG9J/rO8e3/cfl8+csxb9tTvmyLYoLQAAAADcg/3i9Ixfp1HatY/xiY4CAAAAfDVHiNPRC+O34PY7LY/1w/rTYyO0AAAAAHApripO7aP9uCHq5/ef/YUhIqcAAAAAX801H+srsOYUAAAA4Pu55oYow+OxvAFAfuv9jDYAAAAA4Fpo4tQ+pteS8sqoza+SGvB4utdYufRjhOlDPQ8AAAAAvoh+5LTHzpfwAwAAAACUbBOn7jH7rp8vBQAAAAAo2R45BQAAAAA4mGtGTg+o370o1b16yr7A/+QNVdlv/af4n149YV0uXJh3zz8AAIBvoSVOZaNTtiHpX7khae+a08fv4/nvV6rQb9o768/Eoojd9B2pTvxWKb4Oa5SvgDj9MpYffrDp51W8Y3cwf7vzDwAAAJo0xenz+fsIN9NO5GfLbv3HP3OrNjf7l/zbqDew+W0AYnMsNxIHIiCNlGjaMco3NMUp3JF83nmh6r+cTM3fVfMPAAAAInOP9V3076eKngouytgVbk1myu6pfxJ5bZXaN4+ab3wSI2tGlv7LxakVN2nqRV01jLh5GUEckxFDzyhugk/Mv9GENLI3yg/4qG5it0UeSRth5fonojxEEXOBZUWaFJeU2Wew9vs8SZvykxPK/Mr/Ykvej659lkb/DXb8kjEr/3a8YW4CAAD8NebEaf8mbJfXrRVflrmb+/b6ZxABV4uTUb61qYysKSInnrtanD4TMVV+OXB+WwSXtJ/aM8oPdMSpHDWi1IlsJ0rlcLDBHQ/1+7+L9rN306Y/qjDMl797/df8b/5O+tG3L9AWp27cTZbx4T8bKS3L+nOkNOIUAADgOMbitBYGJfbGf6I43V7/GKm7176er9gtj3FVkXOMuM7raLUfIpuj/AFOhVoxlvreHZZ5oMyJrP9e9Jk6nkZ0xnMio/yauf7n7bftm0HqMB7z0dufF+IUAADgLfTFqb9Bd4SpcFtxKoJFjYh5WvlW6BRCryN+tolT4/vsubdJQ3H2LnHq6q9T6RNznu2CadnUUfuxl9/p/9D/k/Z1WPpq/jZ2BjGd26j4GQAAAPbRFqdK9KnBNvElzN3ct9ffRx7F99pu5g/FUc56+53vpUwQQ3kdit/cCZk4a+cPkHO74nR+bliMb6T15vlV/qD/Q/+vtK9C8Z/WJuIUAADgeFri1IqBXlQxsucGPVP2JAEgYqPXv25+IZ5iBPAocer6HMVViNzFOlx+bD+xZy4/4I+Xdg/FqT8uYk1bN2rsfcp61Xi8GMNR/rD/Y/937Ys0+h/rX8bf1VeeV9oNAAAAu9HFqbvplkmLRNmb9pSIXXA3eiUp9WypfwZbbyXW5vNFvManzrLx6JlG7nLWi1ODKRSrN/139Ztk6/Gi6JWck62JHOUHtotTIdsNb5K8XsluQLJiMcsxOi8ViYN8odv/UIfNNifo/m/aF89piVNBBHFSOim7Zv4CAADASsYbolr0d6jv5+z630cu6pxwbKeZ/nrx2YzYjfK/kERQq/kAAABwD7aJUyd+Lv3zpR/lsfyAgY/OHSsUEaf5I/rwGH5ldBoAAACux/bIKbTxayR9EpGtn7cVxOkjeewv6b5fZAAAACDjmuL0gMipPOY18sXurrY7rU8Wa7YN7ZG8j+qteuT8ByKfp/IG/717fgEAAPwVPiVOZVPJEvlSNsTsXXOaiUURK+lrgJx4qVKMcI7yFd4uTmsbtQ1rf5MZ/+2kO78AAABgMx8Tp8/nsi6zE3myO6O3bHSROmO5kXgQAWmkRlPMjPINTXG6hVlxelR7V2SPwNxTdpJV8wsAAACmucZjfRdd1CN/bxAasn6xF3VU843Ny7uMfl//cnFavW5o1brT0OcQPXYpX+Yg54zEqY/aVufVPk1fGWUx4itpWhovXsMkZUSS+ZTlL/anPpoVb/aJuZLyOeDq/nkZL5gvDvlrour+iR/LZSIz9rf9DwAAAKdwDXFai4kUK1ZWibs1mLZFmKh5gp7vlhyGyFl/CcJ6+50/RNCJQLLHRCzaaspzTLJRXU1cbxWnIT+ps3iBvRPfi6DLI9yL/e4l+GLH2shibeOC61f6hSHaY/9Oy7qxKb9czNrf9j8AAACcwufFaS00SqxwOEmcSt09waHnK8Kp81h/qzjN23V+0mwNO9d7/cip68997EWtEWtPI0qXcgFlzLL+a/avpVOHbasUu+n54f9iZyIwI1vsb/sfAAAADuSz4tSJh54wFU4TpyJIYrRMoZWviaNM3OScLU6FdW3U9as+jr/CVD4Sd+XrFHyi2b+WTh2us4Wv0/Pd/3/M3BKBXY/vFvsRpwAAAG/hc+JUiV41WC/u5pDHvT2x0cz/QnHaLW/6JtnLWI3GTrN/LZ06NP9n5y//t/2qBOoW+xGnAAAAb+FT4lQXDRpHCB0FEThboqYWJ1SMUS4/RhjfKU6TX6GyYq08X/B2Vnbl4kyipu40b6Ppz/OZrDGV/hX120irCMT0kXlcl3rEmOU2jvKcPaGfafuy5lRMzcdyvf2l/wEAAOAUPiNO3c2/TJoQsSJiSsSuw9bbEYyjfBtNFH1jDTei6PnmyKm0bxuXZFruiDhTqrbLGBXNN2Wz/lqxHXIl6fVnu91NWnbMa/ZvILFRUj4/TN/MAMzt1vd+qATqGvsRpwAAAG/h8xuiWvR3wN8JEaeLsHLCp53u398+f73/AAAA0OWa4tQJmPu+VzJ55E7EDQAAAGCe60ZO78zTP053SUS2fh4AAAAAZHxt5NTtgnE7upsbhg7EtqE9ktbXO8IBpOt+JfV83ByfBu+ePwAAAOD4mDi1G4iWVAvRnWtOMzEiYjd99VBj3WOMcI7yFRCnb8b5VdtEp1KNz+P3YeagTDFVdHbnDwAAAJzGx8SpvLYn3Oz9q4oO3a0v4iKWG4kLETpGijQjY6N8Q1Ocwjm4OTMdzUzGx+7S/3n9vvxu/aY4nZ4/AAAAcBjXeKzfi4KtFCFbkFcW9SJwar6xOT5TNrLnXy5OrahO09p1p0YcZa9zUl+VZP6NJryqyHA7P+D8bs4sRHXt8+rVWtY+KetTZl8o48SfTar9uQ/nxF+wWUmZj/vj46j7CQAAAB/mCuJUHq/WwmHBLv9bK+6mEQHXbruV75YkhshafwnCJvvlRfhRrDlBtghkJ6oWwVe+aH6UH9gqTkN+ItjjC+yT86Ve34c8Au7tE0Fq6xA71kYmaxtT5sanXwcAAAB8gE+KUysgbDLSNBU6BVXU7kCk7p440fMVUdN5rL9JnBbkdbTaDwJvlD+iLp+PgRe1Rvw9jShdygVKMW3I/HOEKOzV0eo/4hQAAODyXOKxfmfNqXCaOBXBUkUTE1r5mtBTxY9jmzg1Ai97bm7SZcSpx/6SlBhmajZ5i59c+Tp17FtNp47p8TnCDgAAADiUa6w57QvQIyKPGvKotydMmvnT4sex3n4fmUwE3zBy6k5oRyaz/BF1+W4fTN8le/lyoUROM44QhZ06EKcAAAD35WPiNF2j2I2cniQgRKxsiZpaCvEYI4hHidPCH6b+0F6aH9tP7JnLD/jjld25uJQvDu40X97Y83zW45eOkf2yIQJRXZdan7+eXh2z43OEHQAAAHAonxKnspN7SeVj4fQ8q5LUvD30IrXCKN9GC63gEfON6Ols6lovTg2mUKze9N/Vb5Ktx4uqV3LOK/XRKD/QEqeGtH0jUjN/WLEXciWZnitfLLLd+ibJ65vcBqkjROGgjs74OOGspBPmGQAAAKzkKo/1a3a+hP9CiDhdosJOVLXTTH9H4u4I8fcpjvAPAAAA3JZrilMnUHb9fOlHeSw/MOCjk8cKxW8WpwAAAPCnuW7k9M74NaI+icjWz9sK4hQAAAC+lK+NnNqFnn7Htt2pfbJYs21oj5z9us4/tZ4xrGUNqdg5D/uQuXb4F54V0P7N29/55fX27e/k6/0/yL+9/3fyifalTTMqUV+8W998go+L06Zjd645zQZTLrZUILmLr0pxwo3yFcrJE/mL4jTB+uUMcVqPUf62hzB/XJIPk3X+f9hfLpMqtlz0sukqab3aMDbKHyF9O13wx7ccuJT6cH/75fgo18fH2h9f/+f7v++ffe27/vXndX/+n99+n/P972ncn97h/3T8zQTI2ju3/bF9b/H/Bz9/Rp/Pb+l/SqkvuvrmS/isOF0ibK0Lwe6s3iLsZPBiudHgiR1mqJsX4yjfUE4ecFi/nHHhyJi2/Z3PGzfPcvHaxr5lwNwMXv5tA91xb/B4mg/S0Gfrg7yeUf4QKZOIpcOJNi0+e6S/BrazfTs+8YbgPwfS+j7dfoZy/Z/s/yn/bG6/Lz6m5v+J7U9xsv8d3u+arSf3v/z8skLqTeM/NT5n+1/qtzZ85voffj6f3f8Sa0MhTqf1zU35pDiVCfLzz63P3HWh7EVem9QTLmq+mdDxm5eZNv/yyWMnf5rWTmQz+bLXNcXXMAnBJ+bfaEL6zXqUHwgfvqXIC+XzPublXd7Py9zEjJ3La6IK7EWlXzjZq6bU8i37BLFROx7yxP7kmH0MUp7fq19Q6skYlQ+489pzrJXfr7/97d3ZndaX3+zCsbb/nbv6c3Z7+65fvfH5dPsZJk8bu/P8P2ff9vZdfnZ9q58P4bzyuOPs9jP/mDQfPR61H471P3+kTO/+dGb/7fmpWCr+Fs5rf2yfcKb/L3X9+/PT+oRd/e/e34XE98ZLpb74E3xMnEblr0yUgpmJuh0zkWRiqHmCnm9tSia7TNTW5N5k/+NZ3ayWye4m/zKhpf3UnlF+wNVb2+3Lm8vBvURfzksvxNIef/Fp/W+I03i+P659eLXtE4KNJtmoVvLBYdssyqh29OoXXBvtuTkqHxjV08of1C99as0r219fp9L3vv9duy9zY14+HxXxsrl9pb/ZOZ9uP0VseLf/J+3b3L6rX3za/3xQ7Eg5sX3nH1Mmua6zyJmwuf2R/30Z+7efi5oPNrc/439zjlQg815EXDU2htPan7HPsLn9kf+vdP0LyvnC5vblWO/+vk5ffC2fEacyGGGwOhe/x07c1iTYidQ9arvOb01uffLYibbT/ryO0cW19uIraVyMAbWuzgVcnVtfjD3/jXgY59hLN7TtnFXUNeiTypYyJUpfV+X3aX9799eNeL+qf+R/1+/s5mTrqsdnW/utD9/g60+3vzD6fDjH//P2bWtfmddrrumEc9qfvybO8b/k57a0fHCe/50NP1JYaimixoFz2p+dH2f537V/hetftTVha/sl7pY1ur/X/f9qPiFOZdCWwepf/IId5DPEqQx4nKAKrXztQu1MnnzizWL84i+YmK4iTl2Hir42yqjtunPrNGtfTeZjbSxW9T8w8MMQf4NpfjCN8ieQfjXnlrHfTiF9rOqUz5/cLjmm+G9T+0I6v0299he8rtK+R+rufT4Ip/hfmLBP2NH++PNBOa/klPYn2g2c4P9V96eT/C+fZ9GGh381Yete9A7/F/Zlxw/2f8j/+PVvxz6dCwqHtO9TqEfztT2m1fPFvF+cuotdS61JsE3cjZFvPb0PwGb+ysmz3n7vI1MmfBjldbiLN7PNneDbH+WPUMqnaP1vlVHPdf3rXvQrWeefWQZ+6DLq43E+aH17t1/qfmRlbuobYYtt4gu9nfXtK2Tj8+n2HaPPh8Dx/lfozN/17c9eH3Pz//j21/nnWP+7PC217Dm+/0q++jnqeEv7h86/0fhq+WLTUf1XqPo3Pwe39l+Oqff3lfria/nkhiiHG6jsQshQLpQjkMHeEjW1FJMrvvKidfEmE28K1+d4YYRvzrEOlx/bT+yZyw/445XdI5+7cumFay/Eqh5D40PVnW+OZ2tFH4W/W/a5vO5ueGdg1v/6g6ZXvzDnB628HfPO/BrlO0b2eaT/5dimH7Yt//T87wyM45b7s2BD+1lbcv2U+Z9uX8oMx8ezof2h/0f2paxu39VnDvg2/Dwr6xjOf88J7Qf/5GvJE5+krG5/wv8RZ1vXB4f3P/y9zD9nr6+v5PD2Z+eHZ3X7E/635T93/bvmz7r+XXvt+/vib9u+2Cd/h/r+ClcXp91JuQNbbzmhEkb5MuHchDHJfDt62scC+uRx87RTl4YpFKs3/Xf1m2Tr8RfTKzknW5M0yg/4i6Cyu75Ya0xZ44DDduubVNfRss8g/relJBnPK8JTvtGGJB8es/13H5xKquZh339lWsTxKD/Q6X9B/u29Hj/Xp7Kfff9Xu2mTsiVr2w/rhF0qREg454PtD6//gqP9P+OflHXtS745P3ymmJR+PrhzldT5HD6y/aVM6Z+j2g/H2v5fcNdgWpfG8f0XwZJYp9q2cGz7M/blnOH/z13/rnyZ6s/nhdX9797fTf4KffG1fF6ctgji4v4DYubhUJgsaaa/9eRflw9fh3wJWPsF6Ehon/ZpX897B7T/t9v/Rq4pTp24ksHufVu7Lo/lkfPkN+91IE6hJv/2/n5on/ZpX897B7T/t9v/Oq4bOb0zfg2JT8d/o0KcAgAAwJfytZFTeZb+67/JSMj9bLFm29Aeyft1g531UqDw7vEDAACAa/A5ceoEaJryBcc715xmYlHaSkPudds2xQjnKF8BcXos3fEDAACAr+Wz4nQsPO0uty3CTsRNLDcSNyIgjRRqRuZG+YamOIVNrBo/AAAA+BquLk7deSc/0pXXOnReE6HnG8FqI7uSjCz9l4tT9+qIJK1dd2rEmbyiKabsNRvBJ+bfaEL628Oj/ICP6lbjUPvc9iftg7VPyvqU2RfKiKT0SbU/9yHiEwAAAK7xWN9GJXvvEDPnrBV304iAK8VZip7vlkSGyF5/CcIm+x/PRMw5EVm9jioKPmk/tWeUH9gqTkN+MmbFC6zje918H/IIuLdPBKmtQ+xAnAIAAIDhChuiwgtxW9HRKmp3IFJ3Lyqr59firfdYf5M4LcjraLUfBN4of0RdPh8DL2qN2HwaUbqUC5Ri2pD5R7EPAAAAQLiCOBV6Au40cSqCqYomJrTyNaGXia+cbeLUCLzsublJlxGnnvizaqZmk7f4yZWvU8c+AAAAAOEO4vSIyKOGPIrvCaRm/uni1EcmE8GX16GIO3dCOzKZ5Y+oy3f7YPou2UukVImcZiBOAQAAoMHnxGnyK0pW2LXEyklCRtrcEjW1FOIxRhCPEqeuz1HcmfpDe2l+bD+xZy4/4I9XdufiUqKm7jRfXtbDPpM1ptJ/mx3K+0irCHh1XWp9PgAAAIDlY+LUR9tc+vl9NaJsVuT0RORGRksFRvnWfqvYxHwj7p5HRk4NplCs3vTf1W+SrceLu1dyziv10Sg/0BKnhrR9MzaZP6wYD7mS9PHLduub9BM3aCFOAQAAoMFVHuvX7HwJ/4UQcbo84nbCrJ1m+jsSd4g/AAAAuCnXFKdOXO36+dKPkixZ8NHJY4Ui4hQAAAC+lOtGTu+MXyPqk4hs/bytIE4BAADgS0GcAgAAAMBlaIvTx+/j6Tb9aBE42SCzBAfLDTEuclelVRHEsObUpfWP+PeX7/V/iriL36XMhrDByafcvhn/lf07ftPYtdk7vgAAAHBJNHFqd1n/vIzgdLutVXH6NGJg6lVQgqy7NAJ2hcjLd+nnrzaaYU/5mf4PiT5Z2nykv6Ykr1WK/nNitG1f7T+3ez7vnzkh5n87e+cHAAAAXJT+Y/3ZtYsDcSCvJVolHJR23fuYJnfu7y0fGPXfi0KlXtfcrFhc6z93fqt/Iq5f/3ZGEtNXZUmKr4FaqF4VlUZvbfkkNysf/Lo1+nnU+AIAAMDlOEac9s4zeSJMquMdbNSxKGOPTf785t7ykVH/W+LUi0cjEKP2Mj5otS3LByp7I5r/FLuy/hnRZ4WjqXWTSA31J4I4vkDfYSOX0l4zMvxMxGgpvl39Uj62Yezv+zrhsPEFAACAy7FfnPajfiJipgRHihoFm7HFs7d8ZEsZwYuvGC0UsShiLrfJmmlTItIKWv6zZZPH2iECmZ/rjq8XqV50y8v/U8FZ5K+JhrshCZFkza9e0M/4+rDxBQAAgMuxT5yKoDDSpyVSJJoVBdQK9kbGDous7ROnuV/kWKP91prTrv+M75ew7O8/G31t1R8e0QexPEnc0GVqzh65z/gltc+no8TpYeMLAAAAl2O7OHViohc9k6jdemEnKO2q0bIWe8sHZkSYhuYbqastntwGp3yN6ir/qf3bGjktEHFral/6Mxp7ly/9CW0eGjk9bHwBAADgcmwVp1YL9KKi3aif4OpuCYrxbuxzy6fntAWTF2FaHc5BUYzm9hjSNZxa5HTkP6X8YufONaeyXvTZq9/3R+pX16UW/THl7emHidOZ8QUAAIBboolTJzyUFMWAExdlSsWBraOIBOaEOlricFlHKaneyX1e+XH/Ax1xash2sxebmiRvSeVj87H/Hkb8Jr0zp6a+37lbX8RoutNe6leEX7VbP/VPYp8cf4b3uto+Od/vEafj8QUAAIBb0o+cAgAAAAC8EcQpAAAAAFwGxCkAAAAAXIZt4tStGdy1zi/dMGRfA7RmvaFhb3kAAAAAuB5tcfqwv1wke0500Rc2pLQ2JA2wgjKUFbGbvmYpbFYqUrpBqFseAAAAAG6JJk7tLuwf2fHtdlz3IpL5K31WkL0qaSQuZSe37EhPjq0qDwAAAAC3oP9Y30Uw+4/LZ87ZibyWiHdYAgAAAHw/+8Vp+es/R2NsKN4RCgAAAABfyhHidPzC/e1I3adGZQEAAADgOlxanGbrSgEAAADg67nyY315GwBRUwAAAIA/xGU3RBE1BQAAAPh7aOLUPqbXkiIWN79KasCZ61gBAAAA4KL0I6c9dr6EHwAAAACgZJs4dY/yd/18KQAAAABAyfbIKQAAAADAwdwzcnpA+/YVA/4nT+3v9J+wqSvFtqEtgZCfZhVT2Pz1p3j3/AMAALgLLXEqG5LkhumSkVXVz4eeveb08ft4/vuVJvSb9s72M7EoYjf9bX4nfqsUN2iN8hUQp19GmH8+/byS+ePyu/O3O/8AAAD+ME1x+nz+PsLNshPZOWO3/uOfuVWbm/1L/m20G9jcvvQplhuJAxGQRko07RjlG5riFO5IPu+8UPVfTqbm76r5BwAA8IeYe6zvons/VfRUcFHErjDbzEzdZ7bveRrpoPbdo+Ybn8XImpGl/3JxasVNmnpRVw0jbl5GEMdkxNAzipvgE/NvNCGN7I3yAz6qm9htkUfSRli5/okoD1HEXGBZkSbFJWX2Gaz9Pk/SpvzkhDK/8r/Ykveja5+l0X+DHb9kzMq/HW+YmwAAAN/GnDjt32Tt8rm14mqKuZv7ee0LIuBqcTLKtzaVkTVF5MRzV4vTZyKmyi8Pzm+L4JL2U3tG+YGOOJWjRpQ6ke1EqRwONrjjoX7/d9G+lI91Pkxd4f/DfPm713/N/+bvpB99+wJtcerG3WQZH/6zkdKyrD9HSiNOAQAA5hmL0/rGX2Jv7B8Up+e17+ruta/nK3bLY1xV5BwjrvM6Wu2HyOYof4BToVaMpb53h2WeKHMm678XfaaOpxGd8ZzIKL9mrv95+237ZpA6jMd89PbnhTgFAAA4hL449TfgjjAVvlacimBRI2KeVr4VOoXQ64ifbeLUjE323NukoTh7lzh19dep9Ik5z3bBtGzqqP3Yy+/0f+j/Sfs6LH01fxs7g5jObVT8DAAAAH3a4lSJLjXYJq5mmLu5n9W+PIrvtd3MH4qjnPX2u7GRMkEM5XUofnMnZOKsnT9Azu2K0/m5YzG+kdab51f5g/4P/b/SvgrFf1qbiFMAAID1tMSpvdn3ooaRM2/AM3Wf1L6IjV7/u/mFeIoRwKPEqetzFFchchfrcPmx/cSeufyAP17aPRSn/riINW3dqLH3KetV4/FiDEf5w/6P/d+1L9Lof6x/GX9XX3leaTcAAAAM0cWpu6mWSYs02ZvylIidx93olaS0c0b7gq23Emvz+SJe41Nn2Xj0TCN3OevFqcEUitWb/rv6TbL1eFH0Ss7J1kSO8gPbxamQ7YY3SV6vZDcgWbGY5Ridl4rEQb7Q7X+ow2abE3T/N+2L57TEqSCCOCmdlF0zfwEAAKBgvCGqRX8H+vl8uv3jyEWdE47tNNNfLz6bEbtR/heSCGo1HwAAAK7BNnHqxM2tf770ozyWHzjw0bljhSLiNH9EHx7Dr4xOAwAAwPvZHjmF7fg1kj6JyNbP2wri9JE89pd03y8yAAAAf4x7itMDIqfymNfIF7u72u60Plms2Ta0R/I+qrfqkfMfiHyeyhv89+75BQAA8C1cVZzKppIl8qVsiNm75jQTiyJW0tcAOfFSpRjhHOUrvF2c1jZqG9r+JjP+20l3fgEAAECTy4rT53NZl9mJPNmd0Vs2ukidsdxIPIiANFKjKWZG+YamON3CrDg9qr0rskdg7ik7yar5BQAAAJF7PNZ30UU98vcGoSHrF3tRRzXf2Ly8y+j39S8Xp9XrhlatOw19DtFjl/JlDnLOSJz6qG11Xu3T9JVRFiO+kqal8eI1TFJGJJlPWf5if+qjWfFmn5grKZ8Dru6fl/GC+eKQvyaq7p/4sVwmMmN/2/8AAACwiXuI01pMpFixskrcrcG0LcJEzRP0fLfkMETO+ksQ1tvv/CGCTgSSPSZi0VZTnmOSjepq4nqrOA35SZ3FC+yd+F4EXR7hXux3L8EXO9ZGFmsbF1y/0i8M0R77d1rWjU355WLW/rb/AQAAYBPXF6e10CixwuEkcSp19wSHnq8Ip85j/a3iNG/X+UmzNexc7/Ujp64/97EXtUasPY0oXcoFlDHL+q/Zv5ZOHbatUuym54f/i52JwIxssb/tfwAAAFjBtcWpEw89YSqcJk5FkMRomUIrXxNHmbjJOVucCuvaqOtXfRx/hal8JO7K1yn4RLN/LZ06XGcLX6fnu///mLklArse3y32I04BAAAO4briVIleNVgv7uaQx709sdHM/0Jx2i1v+ibZy1iNxk6zfy2dOjT/Z+cv/7f9qgTqFvsRpwAAAIdwVXGqiwaNI4SOggicLVFTixMqxiiXHyOM7xSnya9QWbFWni94Oyu7cnEmUVN3mrfR9Of5TNaYSv+K+m2kVQRi+sg8rks9YsxyG0d5zp7Qz7R9WXMqpuZjud7+0v8AAACwiWuKU3fzL5MmRKyImBKx67D1dgTjKN9GE0XfWMONKHq+OXIq7dvGJZmWOyLOlKrtMkZF803ZrL9WbIdcSXr92W53k5Yd85r9G0hslJTPD9M3MwBzu/W9HyqBusZ+xCkAAMAhXH9DVIv+Dvg7IeJ0EVZO+LTT/fvb56/3HwAA4I9zT3HqBMx93yuZPHIn4gYAAACwcN/I6Z15+sfpLonI1s8DAAAA+GP82cip2wXjdnQ3NwwdiG1DeyStr3eEA0jX/Urq+bg5Pg3ePX8AAAD+CpcVp3YD0ZJqIbpzzWkmRkTspq8eaqx7jBHOUb4C4vTNOL9qm+hUqvF5/D7MHJQpporO7vwBAACAzVxWnMpre8LN3r+q6NDd+iIuYrmRuBChY6RIMzI2yjc0xSmcg5sz09HMZHzsLv2f1+/L79ZvitPp+QMAAADT3OOxfi8KtlKEbEFeWdSLwKn5xub4TNnInn+5OLWiOk1r150acZS9zkl9VZL5N5rwqiLD7fyA87s5sxDVtc+rV2tZ+6SsT5l9oYwTfzap9uc+nBN/wWYlZT7uj4+j7icAAACczB3EqTxerYXDgl3+t1bcTSMCrt12K98tSQyRtf4ShE32y4vwo1hzgmwRyE5ULYKvfNH8KD+wVZyG/ESwxxfYJ+dLvb4PeQTc2yeC1NYhdqyNTNY2psyNT78OAAAAOIEri1MrIGwy0jQVOgVV1O5ApO6eONHzFVHTeay/SZwW5HW02g8Cb5Q/oi6fj4EXtUb8PY0oXcoFSjFtyPxzhCjs1dHqP+IUAADg49zisX5nzalwmjgVwVJFExNa+ZrQU8WPY5s4NQIve25u0mXEqcf+kpQYZmo2eYufXPk6dexbTaeO6fE5wg4AAABYxT3WnPYF6BGRRw151NsTJs38afHjWG+/j0wmgm8YOXUntCOTWf6Iuny3D6bvkr18uVAipxlHiMJOHYhTAACA63JZcZquUexGTk8SECJWtkRNLYV4jBHEo8Rp4Q9Tf2gvzY/tJ/bM5Qf88cruXFzKFwd3mi9v7Hk+6/FLx8h+2RCBqK5Lrc9fT6+O2fE5wg4AAABYxVXFqezkXlL5WDg9z6okNW8PvUitMMq30UIreMR8I3o6m7rWi1ODKRSrN/139Ztk6/Gi6pWc80p9NMoPtMSpIW3fiNTMH1bshVxJpufKF4tst75J8vomt0HqCFE4qKMzPk44K+mEeQYAAAAFd3msX7PzJfwXQsTpEhV2oqqdZvo7EndHiL9PcYR/AAAA4LLcU5w6gbLr50s/ymP5gQEfnTxWKH6zOAUAAICv5r6R0zvj14j6JCJbP28riFMAAAC4KX82cmoXevod23an9slizbahPXL26zr/1HrGsJY1pGLnPOxD5trhX3hWQPs3b3/nl9fbt7+Tr/f/IP/2/t/JJ9qXNs2oRH3xbn1zBpcXp03H7lxzmg2mXGypQHIXX5XihBvlK5STJ/IXxWmC9csZ4rQeo/xtD2H+uCQfJuv8/7C/XCZVbLnoZdNV0nq1YWyUP0L6drrgj285cCn14f72y/FRro+PtT++/s/3f98/+9p3/evP6/78P7/9Puf739O4P73D/+n4mwmQtXdu+2P73uL/D37+jD6f39L/lFJfdPXNTbi2OF0ibK0Lwe6s3iLsZPBiudHgiR1mqJsX4yjfUE4ecFi/nHHhyJi2/Z3PGzfPcvHaxr5lwNwMXv5tA91xb/B4mg/S0Gfrg7yeUf4QKZOIpcOJNi0+e6S/BrazfTs+8YbgPwfS+j7dfoZy/Z/s/yn/bG6/Lz6m5v+J7U9xsv8d3u+arSf3v/z8skLqTeM/NT5n+1/qtzZ85voffj6f3f8Sa0MhTqf1zUW5sjiVCfLzz63P3HWh7EVem9QTLmq+mdDxm5eZNv/yyWMnf5rWTmQz+bLXNcXXMAnBJ+bfaEL6zXqUHwgfvqXIC+XzPublXd7Py9zEjJ3La6IK7EWlXzjZq6bU8i37BLFROx7yxP7kmH0MUp7fq19Q6skYlQ+489pzrJXfr7/97d3ZndaX3+zCsbb/nbv6c3Z7+65fvfH5dPsZJk8bu/P8P2ff9vZdfnZ9q58P4bzyuOPs9jP/mDQfPR61H471P3+kTO/+dGb/7fmpWCr+Fs5rf2yfcKb/L3X9+/PT+oRd/e/e34XE98ZLpb74Ci4rTqPyVyZKwcxE3Y6ZSDIx1DxBz7c2JZNdJmprcm+y//GsblbLZHeTf5nQ0n5qzyg/4Oqt7fblzeXgXqIv56UXYmmPv/i0/jfEaTzfH9c+vNr2CcFGk2xUK/ngsG0WZVQ7evULro323ByVD4zqaeUP6pc+teaV7a+vU+l73/+u3Ze5MS+fj4p42dy+0t/snE+3nyI2vNv/k/Ztbt/VLz7tfz4odqSc2L7zjymTXNdZ5EzY3P7I/76M/dvPRc0Hm9uf8b85RyqQeS8irhobw2ntz9hn2Nz+yP9Xuv4F5Xxhc/tyrHd/X6cvbss1xakMRhiszsXvsRO3NQl2InWP2q7zW5Nbnzx2ou20P69jdHGtvfhKGhdjQK2rcwFX59YXY89/Ix7GOfbSDW07ZxV1DfqksqVMidLXVfl92t/e/XUj3q/qH/nf9Tu7Odm66vHZ1n7rwzf4+tPtL4w+H87x/7x929pX5vWaazrhnPbnr4lz/C/5uS0tH5znf2fDjxSWWoqoceCc9mfnx1n+d+1f4fpXbU3Y2n6Ju2WN7u91/2/NFcWpDNoyWP2LX7CDfIY4lQGPE1Shla9dqJ3Jk0+8WYxf/AUT01XEqetQ0ddGGbVdd26dZu2ryXysjcWq/gcGfhjibzDND6ZR/gTSr+bcMvbbKaSPVZ3y+ZPbJccU/21qX0jnt6nX/oLXVdr3SN29zwfhFP8LE/YJO9offz4o55Wc0v5Eu4ET/L/q/nSS/+XzLNrw8K8mbN2L3uH/wr7s+MH+D/kfv/7t2KdzQeGQ9n0K9Wi+tse0em7M9cSpu9i11JoE28TdGPnW0/sAbOavnDzr7fc+MmXCh1Feh7t4M9vcCb79Uf4IpXyK1v9WGfVc17/uRb+Sdf6ZZeCHLqM+HueD1rd3+6XuR1bmpr4RttgmvtDbWd++QjY+n27fMfp8CBzvf4XO/F3f/uz1MTf/j29/nX+O9b/L01LLnuP7r+Srn6OOt7R/6Pwbja+WLzYd1X+Fqn/zc3Br/+WYen9fqS9uy5U3RDncQGUXQoZyoRyBDPaWqKmlmFzxlRetizeZeFO4PscLI3xzjnW4/Nh+Ys9cfsAfr+we+dyVSy9ceyFW9RgaH6rufHM8Wyv6KPzdss/ldXfDOwOz/tcfNL36hTk/aOXtmHfm1yjfMbLPI/0vxzb9sG35p+d/Z2Act9yfBRvaz9qS66fM/3T7UmY4Pp4N7Q/9P7IvZXX7rj5zwLfh51lZx3D+e05oP/gnX0ue+CRldfsT/o8427o+OLz/4e9l/jl7fX0lh7c/Oz88q9uf8L8t/7nr3zV/1vXv2mvf3xd/2/bFPvk71Pct3F2cdiflDmy95YRKGOXLhHMTxiTz7ehpHwvok8fN005dGqZQrN7039Vvkq3HX0yv5JxsTdIoP+Avgsru+mKtMWWNAw7brW9SXUfLPoP435aSZDyvCE/5RhuSfHjM9t99cCqpmod9/5VpEcej/ECn/wX5t/d6/Fyfyn72/V/tpk3KlqxtP6wTdqkQIeGcD7Y/vP4Ljvb/jH9S1rUv+eb88JliUvr54M5VUudz+Mj2lzKlf45qPxxr+3/BXYNpXRrH918ES2KdatvCse3P2Jdzhv8/d/278mWqP58XVve/e383+Sv0xW25vjhtEcTF/QfEzMOhMFnSTH/ryb8uH74O+RKw9gvQkdA+7dO+nvcOaP9vt39H7ilOnbiSwe59W7suj+WR8+Q373UgTqEm//b+fmif9mlfz3sHtP+3278d942c3hm/hsSn479RIU4BAADgpvzZyKk8S//132Qk5H62WLNtaI/k/brBznopUHj3+AEAAMB7uK44dQI0TfmC451rTjOxKG2lIfe6bZtihHOUr4A4PZbu+AEAAMBtubY4HQtPu8tti7ATcRPLjcSNCEgjhZqRuVG+oSlOYROrxg8AAABuw93FqTvv5Ee68lqHzmsi9HwjWG1kV5KRpf9ycepeHZGktetOjTiTVzTFlL1mI/jE/BtNSH97eJQf8FHdahxqn9v+pH2w9klZnzL7QhmRlD6p9uc+RHwCAAD8AW7xWN9GJXvvEDPnrBV304iAK8VZip7vlkSGyF5/CcIm+x/PRMw5EVm9jioKPmk/tWeUH9gqTkN+MmbFC6zje918H/IIuLdPBKmtQ+xAnAIAAPwJ7rAhKrwQtxUdraJ2ByJ196Kyen4t3nqP9TeJ04K8jlb7QeCN8kfU5fMx8KLWiM2nEaVLuUAppg2ZfxT7AAAA4G9wB3Eq9ATcaeJUBFMVTUxo5WtCLxNfOdvEqRF42XNzky4jTj3xZ9VMzSZv8ZMrX6eOfQAAAPA3+AZxekTkUUMexfcEUjP/dHHqI5OJ4MvrUMSdO6EdmczyR9Tlu30wfZfsJVKqRE4zEKcAAAB/luuK0+RXlKywa4mVk4SMtLklamopxGOMIB4lTl2fo7gz9Yf20vzYfmLPXH7AH6/szsWlRE3dab68rId9JmtMpf82O5T3kVYR8Oq61Pp8AAAA+CNcVpz6aJtLP7+vRpTNipyeiNzIaKnAKN/abxWbmG/E3fPIyKnBFIrVm/67+k2y9Xhx90rOeaU+GuUHWuLUkLZvxibzhxXjIVeSPn7Zbn2TfuIGLcQpAADAn+Uuj/Vrdr6E/0KIOF0ecTth1k4z/R2JO8QfAAAAXJR7ilMnrnb9fOlHSZYs+OjksUIRcQoAAAA35b6R0zvj14j6JCJbP28riFMAAAC4KX82cmoXevod9d0NVwdh29Aeyft1nSesm/0K0nHS8kfsLQ/bePf1BQAA38OlxWnc5e5SLkZ3rjnNxKKI3VTAOPFbpRjhHOUrIE63cXdxulmY1XMsf/XWKH/E4/fxdJv2VNvCBjuf6i+Cg/a71xcAAECHy4rTeFNfbngP5deGNu/Wl/pjudHNUwSkudU2BcYo39AUp38VJ24+F017R/v+i8emdsS+3nwZ5bexb0n4MaX92xJU2+S1XuF68K8Cq8Vxp/1V1xcAAEDCVcWpDXj1IpERd+M8VWQYY7pRKTXfCJPlXVJGCOTi1IrqNE31NcHc/LPXNcXXMAnBJ+bfaMIrEQej/EAQV4oI6bbvqF4V5V9XZcdWScsYLqLOpaJ9qUD5QiKHXR398qP2XfWNL0LZOHX8Y5Dzf/659cX6/OyVlzHS653LF/r2zV87rp5V4hQAAGAr1xSn7mb4Mjf2vnhyWLGxVtxNIzYMRIKSb22KAqq/BGGT/fKi++iPUjw40bEIRmk/tWeUH+iIm277QXz/ZC/ZzyPfzoahMHLOKdrXysoxxU61vNBpf7rNnn9C5NDPZbWfnfK+PZtsVD713Uy+0Ktf6PggQR7/11H/mfYBAAA2cE1x6m98qXiyd1n9JltHtI5D6u7dvPV85abfeazvtNA++/M6Wu2HR6uj/PXk7dditUaxQaMhLssxl7/V9hrl++3X9tv2lGitjpQPvnR1DfvZ4WH6YKpo1jHKb9MfA+s6m/ric3v7AAAAClcWp7nYkGO6eCqFymHE6JeSJ7TyNaFnjx0pTo3oiWFln94qTle2XzFzjsE5p/Zb5s9UDBa0yo/az8qtE5i5UN4vToXRHNk2hybHQF1zmrOtfQAAAIUrP9afFadn3RjlUXzvxt3MP12cOv9ImSCM8zoU0eFO8O2P8keM2tfGr2RSGHXskizbhvlP812xzfKj9pM+uIZWRE1NxUrq+6OP60Z7jozydSbHwDD6AritfQAAAIWrbohyomIReO3HqvM32FWImNwSNbUU4i2+Eusocer6HMWOqT+0l+bH9hN75vIDQWiVdo/a9+Mlcjx9HCw7wMP/fd1Dweaco4tmyTNjIBHcZsS3WX6ifV9Wxk6fXy3/pLhz1pdPd8vLF5uyjlG+MLLPjaNqWzpWauR0pn0AAIANXFacGrLd3o1NSW3Ruo9RpGiULzdsJ0i97eqmEsd6cWowhWL1pv+ufpNsPV50vJJz/E55V36UH+iIm2777pxqt345TkkdklSh6AWiLq68fb3x75Uftj+qfyT+BHfOanEq80eybDIzp7RtlG/R63dfHJSU9FPGbkk/NjKd+WCqfQAAgA1cWZz22fkS/gsh+mkRRk44ttNMfzsRsal8cOAnAACAt3NPcepEw66fL/0oySPRbmRtK4jTIzgrKg8AAAAd7hs5vTN+jaZPzc08m0Gc7sGuBJAUX2UGAAAAb+PPRk6tAvEbaW63oeMN4vLW/gEAAIDbck1x6sRXlbII4841p1ZwhbLSXmfH9+V4gzi9tX8AAADgttwjcirrMo1UUsTY5nWBIr5iOU18nS0A99T/JnHa9Q8AAADACdxCnMorf5qvqjleqMU1h0Uq26hedZWKNyPu4qukJCX5s/W3qfssUeRymUPLPmlf8+fw9VgAAAAAZ3N9cWqEmAgrNc9hxd6bNxW5d0Uugi+P4IayiQDMXkCfnpMemyUt65Y3lGKza59zWOHTPfYAAAAAHMTVxamIqpFgssLrreLUvf4pE4TZGk3/8nMjBp9GlOZlA0eI07DcoWxjzr40PxfXAAAAAB/i0uI0W/fY5v3i1OXVqViXGX+2VPmFnQPE6Y8RprqgnLAvi546sbrNFgAAAIADubI4lcfVM4Lp/Y/1lchkD1l/KtIwO3+/OJWytu+VQJ2xLzlHKiFqCgAAAFfgsuJ0Mmq6T+T16As8G62VSKS2rvTx/H2a49F2iaBWNq4UuBlpfbLmtBaoXfsCPnoq0d3j/QcAAACwgauK09lH9aeulTTiTSReSKWQzHbDm/QTdsTbx/lZzu9LE6GD+tuUYtcJ3VqgNuyL5+jlAAAAAD7G1TdEtdn5Ev7L4oRnOx3ZXy2iCwAAAPBB7ilOnaja9fOlcG7UGQAAAGAL942cwlbsUlNJ1WN+AAAAgA/zZyOnbheRe7WSfQfoyY+3s/eMpnzjuk+WC/x53n19AQDA93BdcRrWlPr08yp+233nmtNMLIqYSt4B6sVVleIGrVG+AuL0Yjx+H0/3E7O6nYP5Z8omudUXJVkyseSXG+Jm5k/efv1FrMwv50/dRr7hbm39dX7Xf93rCwAAoMNVxWm+HtLfKLObt3beCuTmGcuNbp4iIM2ttim2RvmGpjj9Rq4tTu1bDIzYfPm3GWh2DuefvJYrzBf/qrBU/D2eRszFfCdk18yfsn33Z1K/HIiC1H/Bya4Psak936bqb+TP+G/d9QUAAJBwaXGa3GzLvxfeIITklU9Z1KlAzTc39Bh5MsLjXy5ObX/SpPatg7n5Z6+rytaPBp+Yf6MJaeRvlB/woiexe658yO9F35x/fl7ynlXzr2p/P3qXvSorKx9o2R8I7dR58/NPyMXb6vxq/ih22cfkoR+uvna+IHWs6HdWfpQfaPsPAABgM9d9rG9ufOYGbEWPjdSEKEyNu2+uFHfTiB2tm7yg51ubksiTE1l6PZvslxf9RzFWih8nGhbBJu2n9ozyAy1xN1m/yPHwIwAips0RJ2RqsebEemhnVD453/vA/j1tf8C1o4srkydlTR9H808eb6dfPGpG7RRlbaRVOxaij0p9Wf5yjk02KpuI31H9w/YDvX4BAABs5MprTuVRp/39eLm/VmvqFvpRrX1I3b2br57fEg+6gNkkTgvyOkbiZUbc9NhQvxeK9thQ6AzKK+K25982WjuB8fyzPrdJ5kBiS4Zia4I6f9xgFn3Jbc2/DCwRZq0vD3Oy5Ma8Uf0T7bePAQAA7OSq4lTuj/GG/njaG3wdGXOcJk5F8HQiZs18TXx1xJPTAmvtN6IneeRt013E6VD8DMr7/DrN2h/Q2nGsmX/amlOHF7gNYWp91pw/hX+q8UnH3xy30dt2/7M5Nqp/qn2h7T8AAIDNXFOcKjc99ebo2Cbuxkg0qnfjbeZrtmo3fM96+51QkzJB2OR1KP5zJ/j2R/kjNtSfisuh0BmU9/9vir5ptHYaxzvzT6i/II1tbM8vpf3R+AzyXfbR86PlPwAAgB1cU5wG8bVElezNv7o5CifdIEWMbImaWoL9XjxKZE3+Vu3fIk5dn6vIXiE+YvuJPXP5AX+8snuu/nxM3DnumPt/Ktzy8R2VD+cbsZitpXwU49GyP6C1I4T+dOZf2pYSObVjunn++PZifu0vrf3SX723BYzqH7ZvafkPAABgB1feECWPRGOKm29y8pvocdh6K7E2ny+CYHnqamzvbJpZL04NplCs3vTf1W+SrceLhldyTrZmcpQfaIm7yfoLseRclvxtHNTfrR/+9udn5WUMlvYl5XUsZUypzH47dlrK5lF//knbS5J+LFHsYH+ZKvHXHfNlHamk6k0FyfhL+9WaV5l/PtfmV8KyX38vf85/AAAAG7muOB0Rbp6lcLofIk4X4aILmyXN9FcTdymj/BF7ywMAAAA0uKc4deKojvbcheSRq/l/GRHcD+IUAAAAbsp9I6d3xq8R9UlEtn7eVhCnAAAAcFP+bOTU7Vhxu6+VDSOHY9vQHsn7dZGs11vHu8cPAAAA3sN1xWm5IaMUbzvXnGZiUcRu+pogJ36rFCOco3wFxOmxdMcPAAAAbstVxanbzRwEmxdwiviz520RdiJuYrmRuJH2jRRqRuZG+YamOIVNrBo/AAAAuA3XFKdOjGZizz7G1cSdi2Ke+khXXttTvYonQc03fYiRXyNL/+XitHodz9p1p0acySuYYlJfxWT+jSa8qshwOz/gvxRUfg/l8z7m5V2e/qqoQb6MtRGerm4R/SFKjgAFAAD4eq4pToP4SY7ZyKMuTpxuPXpTUUAEXCnOUvR8a1OM7PWXIGyy//FMxJ4TkdXrqKLgk/ZTe0b5gb44NQX8S/DlvHRsSnuCGA/1DPKtMeKShz/u6pbD3S8JAAAAcH+u+lg/F0tB3Ilgqc+1AuYkcSp196Kyer4Tb7W4LkWew/Z1p/15Ha32g4Ac5Y9QyqeodSVlRvlOhdqxT8cWcQoAAPAHuPKGqOyRsf0FJF08nSZORURV0cSEVr4mvuyxI8Vp6h+friJOXYfUaGsUn6N8xCkAAMDf5LritEAVNA6Xdbw4lWhtU4AZmvmni1P3WFzKBGGc16GIx8x/o/wRA3GqCt2kzChfbEGcAgAA/E0uK04fjyUi+eiJoYFQ2ooIqC1RU0shHsV+G+Q8Spy6PkehZuoP7aX5sf3Enrn8gD9e2T3yuSuXCkkrMmM9g3zEKQAAwN/lquL0YZSIyBWXJEKpixIrXnoiciOpKNIY5Yt4XVYlGNFllyUcJU4NiX9EJLv6TbL1ePH4Ss7J3hM7yg9sFaeCKWscsGe3PuIUAADgD3Kbx/oV/R3wdyIXXT6q2Uwz/R2JxxlxCQAAAPAB7ilOnbja9fOlH+Xx+4hRRBedPFYoIk4BAADgptw3cnpn/BpRn0Rk6+dtBXEKAAAAN+XPRk7tQk+/Y9zuHj9ZrNk2tEfyfl3nqnWzf0Bcvnt8AAAA4Bp8Tpw+fh9Pt2lIFx3Li/cl1UJ055rTTCyK2EtfbeTEX5VihHOUr/B2cVrbeKvNRN3xAQAAgK/lE+L08c9IjZ/X70v+NaJJE1n5Lnwn4DRxtXm3voifWG4kfqR9I5WaYnCUb2iK0y3MitOj2vsAq8YHAAAAvobPPtZviSzluH3Mq4mtGaG2E9N2N+qo5hvBGiO/Rpb+y8WpFdVpWrXuNPS5F12Wc0bi1Edtq/Nqn1avzjLiMWlaGi9eFeW/hPjsPH+xP/sVMMQnAAAAXFKcalFGe0wXME63Hr2pKGBsFGGl5gl6vlsyuUR+e0sQ1tvv/CaCLr7/VcSiraY8xyQb1dXE9VZxGvKTOtMfTTA48W3q9eOVR7gX+//ZOlzkGXEKAAAA1xSnTq0NBVOgiuodiNSttRnQ8xVbNcHt2SpO83ad0FT9YxqwUrHTj5y6/tzHXtQasfk0onQpF3D5WTQ56397LAEAAOCP8w2R09PEqbQZo30KrXzNVq1PnrPFqbCujZE49cSfZZVfeiqXFGgp+KQx7gAAAAD3X3O6RdzNIY/iewKqmf+F4rRb3vRNspdIqRI5zUCcAgAAQINrilMfqUvWbLbFzklCR8TklqipxdkrYs7mxwjjO8Vp8itUVhiX5wvezsqu3N8yFu40b6Ppz/OZrDGV/hX12/ETga6uSz1pzAAAAOD+fEKcOuGipEzsjd5z6shF7HHYejuCcZRvo4nBfNkw9Xxz5NRHM10yLavCviVODcaoaL4pm/XXiu2QK0mvP9utb5K8PsxtkEKcAgAAQIPPRk73sPMl/BdCxOkSFXbCrZ3u318AAACAJvcUp07A7fr50o+SPHIvI54AAAAAf5n7Rk7vzNM/TndJRLZ+HgAAAMAfA3EKJaOklQEAAAA4hLY4ffw+nm5Tj/bIWTbILMG/ckNMY93kqgjh3IaoNvvL9/o/Rdyl71Jmg90gtaTcvhn/lf07blPYKGllAAAAAA5BE6d2l/XPywjO9i8LPZ5GTA1fVRSQdZVGwK4Qefku/PzVRjPsKT/T/yHRJ0ubj/TXlOS1StF/fg1t077af273fN4/c0LM38MoaWUAAAAADqH/WN+JprE4G4g/eS3RCmGptuvetzS5U31v+cCo/14UKvW65mbF4lr/ufNb/RNx/fq3NlK8MEpaGQAAAIBDOEac9s4zefJ+y+p4Bxt1LMrYY/rPl1bsLR/ZKk69eDQCMT55Nz5otS3LByp7I5r/FLuy/j1+nzbqa2rdIFJHSSsDAAAAcAj7xWk/6iePn8fitkCNcs7Y4tlbPrKljODKiSB1L50XsSgqNbfJmmmT+Gid/2zZZNlCWH+an+uOrxWpo6SVAQAAADiEfeJUhKmRPq3H0RLN2/LrTXsjn3vLR/aJ09wvcqzRfmvNadd/xvdLWPb3n42+tuoPv1YVxHKfUdLKAAAAABzCdnHaj5gKErVbL+wEpV01Gtpib/lAr/89NN9IXW1x7DY45WtUV/lP7R+RUwAAALgZW8Vp/lhZoRv1E1zdLcE43m1/bvn0nLZAdPWqdTgHRTGa22OQ3frx/66dzL6R/5Tyi52sOQUAAICboolTK6S0FMVSEHZ5SsWVFgnMGYnDZR2lpPo9peeVH/c/0BGnBvtKKlvQpGJTk+QtycjIwr6R/x5G/Ca9M6emvme3PgAAANyUfuQU/iKjpJUBAAAAOATEKZSMklYGAAAA4BAQp1AySloZAAAAgENAnAIAAADAZUCcAgAAAMBlQJwCAAAAwDX47/f/AW32tXtXgnsyAAAAAElFTkSuQmCC" alt="" />
 
 
根据上面的介绍和例子,用php写一段scan的用法
$redis = Cache::store('redis')->handler();
//$cursor = 0;//游标,等于0没有结果,坑
$cursor = null;
$redis->setOption(\Redis::OPT_SCAN,\Redis::SCAN_RETRY);
$arr = [];
while ($res = $redis->scan($cursor, '77dj_app:activity:4:*:135')) {
if (is_array($res)) {
$arr = array_merge($arr, $res);
}
}
var_dump($arr);exit;
但是始终返回的是空数组
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAATYAAABFCAYAAADAfcpyAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAUwSURBVHhe7dmBbtw2DIDhPG2fJAOGPdj2WLcSGxGGJSXKJ19t3v8BQiSSpn1JTaTtxwMAmmGwAWiHwQagHQYbgHYYbADaYbABaOeUwfbxsbet9It6+tju+1r6DNk9zry32NH/Ds94NnlGXVYWP2JHD2vXc1W88l5nmn4C/aArHziry3plcSuK+1h27U4rz7fTjv53eMZXOfPnGPWQmF8rVuufsftevp9+/jM/U6mzfYDqw8zqsvxq3KvWHUX/sbv0z/pctf+u56rYeS/pZfv53md9rlLXIw82euCd13jVuqPoP3aX/lmfq/bf9VwVR+41+rw25+tm56NKXUYPlhnVZbkoLjFdVhQTUUz4ej1X4yqLRXGhOZ8fxXzOn62s1sdVFBO+Xs/VuIpiIrvGx2ydjYsol+1VFBNRTIziNmfPPif8WUV1dnlZzsfs2eciWhPVRnEbs/ERrcvqq32OKHW2D7DyMFHtyoec3bfaK+uzuhf+rKJ4pae/Luojonil5+w6sdon2ysfW+2T7YU/C4llcVXpI1b6yD7rI2a9lO+pju5tbGSlp8j2kVnt7PpnlbqvfCBr5QPNanf00qVW98KfVRTPaoXkdFnZNVHcxip7lcV0qdW98rGoRlR6VnpFMbHaR2T97VJRrRXlZ7Hq3i7Ln0ds7TP7iOT9UnZ/ltIdjj5UVJtdP6t9plfWZ3Uv/FlF8UpPf13UR0TxSs/ZdWK1T7ZXPrbaJ9sLfxZRTKz2EUf7R6q9bGx1b2k8y3uV/pX9zNHrnjG9izyIXd7sQX0+qx/F7bKya0RUa5ePWVHcxkY5bxb3+WpMzWp9XvmY1tl6f1ZZ3Mqu8Xxczxqr5vXs+Zytt7ksrnzcnzNRvS4ft2dl81ncnv1e2L2ldb7WxqK9nq0oJvw19mzjyp+P2tNlYNeDRka9K/fNas585qs4+/vzDt/Diit/H1af7U4/09v96ZNvrq5nZH2y+LvJvg9ZHPey+nNcrf/d+NMJoB0GG4B2GGwA2mk/2G7zbwI3eU7gDlq/TavD4hXDRe6hy3vF/YF30PZNuuKQsM/EYAPO0/JNuvpQEww24DzFN+nvx+fPl05evP/W58/I9/jnP7ZG8rVcFvt+jdbUSL331edr+bhnc75mFrNLc5Y/iygGYF3hTdIB44eZP9uYinKjfqNc3ZGh4fOjc7YfmfUX1V4AxhbeJDukqsOnkov7ff3G9vxQE3qfSBZXNq997MrisjRn+bOIYgCOKb5Ndsj4gTMaQFlu3m/3YFMrQ0XimvNfV/hroh5H+gKIFd6mePDkZyvKVa4f9RybDYjqULGxbC+ia73R9aLSA0Bd8Y3SQePXj8ePX2J+YFVzUf75wfbrPb4PmUp8lKsY1Vd7AKi76Ft1fLCJuwwLhhpwjgu9Wf63uGNDDQD4lQFAOww2AO0w2AC0w2AD0A6DDUA7tx1sf/71x/87APjuloONoQZg5CWDTQaRLmVjNpfFRZabnQG8l9MHmx0uftDoOfsq/DViFovyAN7HqYNNBoxfSvfZVzU7KxvPagC8h9MHW0Zz2Vc1O6vsegDv56WDzZ79IPJfhd2rLC/7qB7A+3npX0WVj9tl8xFfq7J6AO/n9P88WHF0ODHUAFiXGWzRb2EjWs9QA+Bd6jc2ANiBwQagHQYbgHYYbADaYbABaIfBBqAdBhuAdhhsANphsAFoh8EGoB0GG4B2GGwA2mGwAWiHwQagHQYbgHYYbADaYbABaIfBBqAdBhuAdhhsANphsAFoh8EGoJnH418PrtZk1MUQSgAAAABJRU5ErkJggg==" alt="" />
看github上面的用法是cursor = null ,然后将cursor的0改为null,就有结果了
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAYAAAABFCAYAAABDlTEMAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAgaSURBVHhe7dpdjuU2DkDhWm2vpAMEWVjykj1VmkmIYrNJirJl3x+dDxDGoijKvi5Lycx8fAIAtsQBAACb4gAAgE1xAADApjgAAGBTlxwAHx9ry0q9qKaPrV7X0nvI1rhybbGi/ivc49XkHrVZWfyIFTWsVffVcedaeLzhm9Y/iJk/jCwvq5XFrSjuY9nclWbub6UV9V/hHu9y5XuMakjMtxmz+WesXsvX0+e/85kQa70B+6K6L22Ul43Pxr1u3lHUr71K/azOs9ZfdV8dK9eSWraer33nc+FXrV//yAusXuzKOV437yjq116lflbnWeuvuq+OI2tVz2vHfN6oj2u1fu3qBWaqvGwsiktMmxXFRBQTPl/73bjKYlFc6Jgfr2J+zPetLNfHVRQTPl/73biKYiKb42M2z8ZFNJZdqygmopio4nbM9v2Y8H0V5dnmZWM+Zvt+LKI5UW4UtzEbr2helt+tg+u03oB9UTMvLcqd+WMYrdutldWZvRa+r6J4p6afF9URUbxTczRPzNbJrpWPzdbJroXvC4llcdWpI2bqyHVWR4xqKV9THb22scpMTZFdR0a5o/m4R+stzLx4a+bFj3JX1NKmZq+F76sonuUKGdNmZXOiuI11rlUW06Zmr5WPRTmiU7NTK4qJ2Toiq2+binKtaHwU617bZvl+xeaeuY7IuG/KXuOxWm/i6MuLcrP5o9wztbI6s9fC91UU79T086I6Iop3ao7midk62bXysdk62bXwfRHFxGwdcbR+pFvLxmavLY1n416nfud65Og8XG/4NuSF2eaNXqgfz/KruG1WNkdEubb5mBXFbawa80ZxP96NqVGuH1c+pnk23/dVFreyOZ6Pa19j3XHte37M5tuxLK583PczUb42H7d9ZcezuO37a2GvLc3zuTYWXWvfimLCz7F9G1e+j2td/mtf+UKr2p11s5wd/giv/n12+A07nvl3mL033un7ebk3Kn+E2s7I6mTx3WS/QxbHa5l9j7P5eA28TQDYFAcAAGyKAwAANvX2B8Cr/HeW/HerAO721rvO7KZ61yacrcMhAOBOb7vjPONmKvekLcIBAOBOb7njPPNGWt0bBwCAOzV3nD8/v//YnGSD+q99/xH5Of79L5sj472xLPbzHM3pkXzvq85X83HPjvmcUcw2y/etagwAVmvsOLoR+03f921MRWNVvWqsL9pIR5urH6/62XVHlT9bCwDOmNhx7Gbe3aQ7Y3G9r38DOL/5C10nksWVHdc6tmVxaZbvW9UYAFyhuevYzdhvzNVGnY2N660+AFQ0ns2RuI75/zyimnumLgAc0dh14g0671vRWGd+VbM22kij8VEsuxbR3IjkZbndGgCwUnPn0Q3Zt2+f336J+Y29OxaNnz8Afl3ja7wbr8Y6qjndGgCw2pPuPscPAPEqmyqbP4BHeqIdyP9bwbHNHwDQwz+CAsCmOAAAYFMcAACwKQ6AJ/D3x8e/DXhFq/9+d/w/RzzqmS9d9et/0D2/zO9//Pb/1WNc/YKyD0g/LtuquJeNZfnv5shz3vnbdNeSPN+qeEeWG9WyMT8mfP8o+52t3D+OOLN2du9ZXESxq122YvTgZz3yELjy5VQfT/ahzXyA1diru+vZrlqnWzfLO3pfMi+a62Par9apxmZk39gdG+OqtSXfzsmuxah/h8tWvOrhVh0Cj/ixz8o+tNEHuOoDfUZ3PdsV60jNbt0s78x9deZqzpl1OrLv8Y7vdOXafo72O7WOrHfWZStmP0RGNvaoRbL4jEf82GfNbAISs01FsZFojo3ZsSxuRTExmjNqVhSv8uy1zbGxaizrZ7KcbI7EbVNZXEUxVY0pzdH62lbLvscqrs33bdyKcnyzojEf05bRsU5+Fr/SZSv6h1n9cJ1DQH9sbSqKZ9fC94XGojExGj8i+/B8fNQX3Y+4qpWNVXMy1ZyZMa+aK6L53Zjo1Ito3my+yuZ364kqV8bs+Jl1OrJvJIrbWHUdjdmYimLCz8/yIj4/u7Zm6q9y2Yr+YUYPZ/+p37ZIFveqNaMxiWVzsnzVuT4j++CieOdjnf2AJV+b8jW0n8U7JFebquaPavvxUV90Y0rHqhzL5nXneNm8mXqd3BXrjGTfSBSXmG8at2w/uxa+r6K8rHk+NuqLKHaHy1btPPQR3c1fybrdH7y6x1G+H5d+VW/WzIfoY52cis3NroX2s/hIVruaP6odjWssm1vNiYzqeZLn24jP0X4W75hZ98w6I9l3EsW7uVF/Zb1MZ41Ozl0uW7Xz0LNmN3/r7EsY5WfXq2QfXBTvfKzdD7iqlY1VczLVnO5YtE4Vi8bEqM5ofEZ3ns/TfhbviHKvWGck+15G35zQfhYXUR2V5VX1IjKezbHxqE4Uu8ulK8uDaTvryOZv1/f34OO+b0VjPjYaPyv74Kq4b5bvV3wdnRvFRBZXUUz4eTYviqkobvOzcc/n+5wopqJ4lqu0ns2r5kT5IouLKCZGc6KxLH6W/0bstzMas82PKxuzceHjo37G5vn8KKai2J0eu/qb8i/10S85suIjzmqs3iBewY7PvNJV38gzf4vPcC/81V5EXq62ZyGblDbLxm2rZHlZ/B3t9Kyvyn6Hz/QtPgt+EQDYFAcAAGyKAwAANsUBAACb4gAAgE1xAADApjgAAGBTHAAAsCkOAADYFAcAAGyKAwAANsUBAACb4gAAgE1xAADApjgAAGBTHAAAsCkOAADYFAcAAGyKAwAANsUBAACb4gAAgE1xAADApjgAAGBLn5//AODpUnQRjuyMAAAAAElFTkSuQmCC" alt="" />

redis scan命令使用的更多相关文章

  1. Redis Scan命令

    原地址:https://www.cnblogs.com/tekkaman/p/4887293.html [Redis Scan命令] SCAN cursor [MATCH pattern] [COUN ...

  2. redis scan 命令指南

    redis scan 命令指南 1. 模糊查询键值 redis 中模糊查询key有 keys,scan等,一下是一些具体用法. -- 命令用法:keys [pattern] keys name* -- ...

  3. Redis SCAN命令实现有限保证的原理

    SCAN命令可以为用户保证:从完整遍历开始直到完整遍历结束期间,一直存在于数据集内的所有元素都会被完整遍历返回,但是同一个元素可能会被返回多次.如果一个元素是在迭代过程中被添加到数据集的,又或者是在迭 ...

  4. 用redis的scan命令代替keys命令,以及在spring-data-redis中遇到的问题

    摘要 本文主要是介绍使用redis scan命令遇到的一些问题总结,scan命令本身没有什么问题,主要是spring-data-redis的问题. 需求 需要遍历redis中key,找到符合某些pat ...

  5. Redis中的Scan命令的使用

    Redis中有一个经典的问题,在巨大的数据量的情况下,做类似于查找符合某种规则的Key的信息,这里就有两种方式,一是keys命令,简单粗暴,由于Redis单线程这一特性,keys命令是以阻塞的方式执行 ...

  6. Redis中的Scan命令踩坑记

    1 原本以为自己对redis命令还蛮熟悉的,各种数据模型各种基于redis的骚操作.但是最近在使用redis的scan的命令式却踩了一个坑,顿时发觉自己原来对redis的游标理解的很有限.所以记录下这 ...

  7. redis 迭代命令SCAN、SSCAN、HSCAN、ZSCAN

    SCAN 命令用于迭代当前数据库中的数据库键.SSCAN 命令用于迭代集合键中的元素.HSCAN 命令用于迭代哈希键中的键值对.ZSCAN 命令用于迭代有序集合中的元素(包括元素成员和元素分值). S ...

  8. redis 《scan命令》

    此命令十分奇特建议参考文档:http://redisdoc.com/database/scan.html#scan     222222222222222并非每次迭代都要使用相同的 COUNT 值. ...

  9. Redis常用命令

    Redis常用命令Redis提供了丰富的命令对数据库和各种数据类型进行操作,这些命令可以再Linux终端使用.1.键值相关命令2.服务器相关命令 一.键值相关命令 1.get get 键值 当 key ...

随机推荐

  1. 使用echarts去对数据进行图形分析

    首先导入js包:echarts.min.js <script type="text/javascript" src="js/echarts.min.js" ...

  2. [TimLinux] Python 函数

    1. 函数(function)与方法(method)的区别 方法:在类结构体中通过def语句声明的代码块称为方法,比如类方法(classmethod),实例方法,静态方法(staticmethod)等 ...

  3. elasticsearch中mapping全解实战

    目录 Mapping简介 Mapping Type 分词器最佳实践 字段类型 text 类型 keyword 类型 date类型 object类型 nest类型 range类型 实战:同时使用keyw ...

  4. 《一头扎进》系列之Python+Selenium框架设计篇1-什么是自动化测试框架-价值好几K的框架,不看别后悔,过时不候

    1. 什么是自动化测试框架 在了解什么是自动化测试框架之前,先了解一下什么叫框架?框架是整个或部分系统的可重用设计,表现为一组抽象构件及构件实例间交互的方法:另一种定义认为,框架是可被应用开发者定制的 ...

  5. 【Java Web开发学习】远程方法调用RMI

    Java RMI 远程方法调用Remote Method Invocation 转载:http://www.cnblogs.com/yangchongxing/p/9078061.html 1.创建远 ...

  6. skipping archived logs of thread 1 from sequence 29 to 46; already backed up

    问题描述:删除归档的备份,在进行归档的重新备份,提示:skipping archived logs of thread 1 from sequence 29 to 46; already backed ...

  7. 阿里云如何基于标准 K8s 打造边缘计算云原生基础设施

    作者 | 黄玉奇(徙远)  阿里巴巴高级技术专家 关注"阿里巴巴云原生"公众号,回复关键词 1219 即可下载本文 PPT 及实操演示视频. 导读:伴随 5G.IoT 的发展,边缘 ...

  8. 五分钟学会conda常用命令

    文章目录 conda常用命令 1. 获取版本号 2. 获取帮助 3. 环境管理 4. 分享环境 5. 包管理 conda常用命令 1. 获取版本号 conda --version 或 conda -V ...

  9. Jenkins+GitLab+Sonarqube+Shell持续集成CI/CD

    1.部署GitLab 2.部署Jenkins 3.Sonar代码审计 4.参数化构建 5.git参数化构建

  10. Educational Codeforces Round 78 (Rated for Div. 2)

    A题 给出n对串,求s1,是否为s2一段连续子串的重排,串长度只有100,从第一个字符开始枚举,sort之后比较一遍就可以了: char s1[200],s2[200],s3[200]; int ma ...