整理一下前一段时间的最小生成树的算法。(其实是刚弄明白

Kruskal其实算是一种贪心算法。先将边按权值排序,每次选一条没选过的权值最小边加入树,若加入后成环就跳过。

先贴张图做个示例。

(可视化均来自VisuAlgo)

1、邻接链表按权值排序后(可以直接写个cmp,sort()结构体):

2、依次选边,若成环则跳过,否则加入最小生成树并计数。

  这里判断是否成环用的是并查集:如果新加入的边两个端点在同一个集合中,就说明已经有一条路径联通这两个端点。

3、重复2,直到加入了n-1条边或遍历完成(无最小生成树)。

选取1号、4号、7号后:

选取6号(1--4),成环,跳过;

加入5号(2--3),达到n-1条,最小生成树形成。

代码实现:

#include <bits/stdc++.h>
#define maxn 100010
using namespace std; struct edge{
int from, to, val;
};
edge tree[maxn];
bool cmp(const edge &a, const edge &b){
return a.val < b.val;
}
int m, n, father[maxn], rslt = ;
bool possible = true; int get_father(int x){
if(father[x] == x) return x;
return father[x] = get_father(father[x]);
}
void kruskal(){
int f1, f2, cnt = ;
for(int i=; i<=n; i++){
father[i] = i;
}
for(int i=; i<=m; i++){
f1 = get_father(tree[i].from);
f2 = get_father(tree[i].to);
if(f1 != f2){
rslt += tree[i].val;
father[f1] = f2;
if(++cnt == n-){
return;
}
}
}
possible = false;
cout << "Impossible!";
return;
} int main(){
cin >> n >> m;
for(int i=; i<=m; i++){
cin >> tree[i].from >> tree[i].to >> tree[i].val;
}
sort(tree+, tree+m+, cmp);
kruskal();
if(possible) cout << rslt;
return ;
}

Kruskal算法求最小生成树 笔记与思路整理的更多相关文章

  1. 利用Kruskal算法求最小生成树解决聪明的猴子问题 -- 数据结构

    题目:聪明的猴子 链接:https://ac.nowcoder.com/acm/problem/19964 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个 ...

  2. 克鲁斯卡尔(Kruskal)算法求最小生成树

    /* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #inc ...

  3. Prim算法和Kruskal算法求最小生成树

    Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小 ...

  4. kruskal算法求最小生成树(jungle roads的kruskal解法)

    注意: 注意数组越界问题(提交出现runtimeError代表数组越界) 刚开始提交的时候,边集中边的数目和点集中点的数目用的同一个宏定义,但是宏定义是按照点的最大数定义的,所以提交的时候出现了数组越 ...

  5. Prime算法 与 Kruskal算法求最小生成树模板

    算法原理参考链接 ==> UESTC算法讲堂——最小生成树 关于两种算法的复杂度分析 ==> http://blog.csdn.net/haskei/article/details/531 ...

  6. 859. Kruskal算法求最小生成树(模板)

    给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数. 求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible. 给定一张边带权的无向图G=(V, E),其中V表示 ...

  7. Kruskal算法求最小生成树

    Kruskal算法是根据权来筛选节点,也是采用贪心算法. /// Kruskal ///初始化每个节点为独立的点,他的祖先为自己本身 void made(int n) { ; i<=n; i++ ...

  8. Kruskal算法求最小生成树(POJ2485)

    题目链接:http://poj.org/problem?id=2485 #include <iostream> #include <stdio.h> #include < ...

  9. AcWing 859. Kruskal算法求最小生成树 稠密图

    //稠密图 #include <cstring> #include <iostream> #include <algorithm> using namespace ...

随机推荐

  1. [Note] 使用Code Snippet简化编码

    使用NewtonSoft.Json写实体类时大量格式一致的代码出现 ,这时可以使用Code snippet来加快编码速度 [JsonProperty(PropertyName = "mess ...

  2. ELK 学习笔记之 Logstash安装

    Logstash安装: https://www.elastic.co/downloads/logstash 下载解压: tar –zxvf logstash-5.6.1.tar.gz 在/usr/lo ...

  3. scrapy架构流程

    1.爬虫spiders将请求通过引擎传递给调度器scheduler 2.scheduler有个请求队列,在请求队列中拿出请求给下载器,downloader 3.downloader从Internet的 ...

  4. java并发之内存模型

    java内存模型知识导图 一 并发问题及含义   并发编程存在原子性.可见性.有序性问题. 原子性即一系列操作要么都执行,要么都不执行. 可见性,一个线程对共享变量的修改,另一个线程可能不会马上看到. ...

  5. Java读源码之Object

    前言 JDK版本: 1.8 最近想看看jdk源码提高下技术深度(比较闲),万物皆对象,虽然Object大多native方法但还是很重要的. 源码 package java.lang; /** * Ja ...

  6. vue常见问题随笔集

    1.vuex操作对应关系 设置          触发/获取 action <-> dispatch mutations <-> commit getters <-> ...

  7. Windows下如何调试驱动程序

    Windows内核分析索引目录:https://www.cnblogs.com/onetrainee/p/11675224.html 一.配置Windbg使用双机调试 win10中“windbg+vm ...

  8. 基于 HTML5 的工控物联网的隧道监控实战

    前言 监控隧道内的车道堵塞情况.隧道内的车祸现场,在隧道中显示当前车祸位置并在隧道口给与提示等等功能都是非常有必要的.这个隧道 Demo 的主要内容包括:照明.风机.车道指示灯.交通信号灯.情报板.消 ...

  9. e课表项目第二次冲刺周期第十天

    昨天完成了什么? 昨天还有一天第一次冲刺周期就结束了,我们的工作也接近尾声了,所以今天我利用之前的方法,完成了对监听的设置,以及对修改界面的编写,可以实现相应的删除和修改的功能,然后我和我们组的成员商 ...

  10. linux系统下使用宝塔面板安装owncloud常见问题

    在安装owncloud时出现 无法写入“config”目录! 解决方法 在宝塔面板,找到owncloud根目录,点击"权限“设置权限 将权限设置为777,应用到子目录打勾(如下图) 确定后再 ...