1. 基本原理

变换形式如下

$$T(r) = c\lg(r+1)$$

  • c为常数

由于对数函数的导数随自变量的增大而减小,对数变换将输入窄范围的低灰度值扩展为范围宽的灰度值和宽范围的高灰度值压缩为映射为范围窄灰度值。从视觉上,通常是图片变得更亮了

2. 测试结果

对数变换,参数C=1(图源自skimage)

3. 代码

 def logarithmic_transformation(input_image, c):
'''
对数变换
:param input_image: 原图像
:param c: 对数变换超参数
:return: 对数变换后的图像
'''
input_image_cp = np.copy(input_image) # 输入图像的副本 output_imgae = c * np.log(1 + input_image_cp.astype(int)) # 输出图像 return output_imgae

对数变换(一些基本的灰度变换函数)基本原理及Python实现的更多相关文章

  1. imadjust从用法到原理—Matlab灰度变换函数之一

    imadjust从用法到原理-Matlab灰度变换函数之一 转摘网址:http://blog.sina.com.cn/s/blog_14d1511ee0102ww6s.html imadjust函数是 ...

  2. 对比度拉伸(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 对比度拉伸是扩展图像灰度级动态范围的处理.通过在灰度级中确定两个点来控制变换函数的形状.下面是对比度拉伸函数中阈值处理的代码示例,阈值为平均值. 2. 测试结果 图源自skimage ...

  3. 比特平面分层(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 在灰度图中,像素值的范围为[0, 255],即共有256级灰度.在计算机中,我们使用8比特数来表示每一个像素值.因此可以提取出不同比特层面的灰度图.比特层面分层可用于图片压缩:只储存较 ...

  4. 灰度级分层(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 灰度级分层通常用于突出感兴趣的特定灰度范围内的亮度.灰度级分层有两大基本方法. 将感兴趣的灰度范围内的值显示为一个值(比如0),而其他范围的值为另外一个值(255). 将感兴趣的灰度范 ...

  5. 伽马变换(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 变换形式 $$s=cr^{\gamma}$$ c与$\gamma$均为常数 可通过调整$\gamma$来调整该变换,最常用于伽马校正与对比度增强 2. 测试结果 图源自skimage ...

  6. 图像反转(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 获取像素值在[0, L]范围内的图像的反转图像,即为负片.适用于增强图像中白色或者灰色的区域,尤其当黑色在图片中占主地位时候 $$T(r) = L-r$$ 2. 运行结果 图源自ski ...

  7. 直方图均衡基本原理及Python实现

    1. 基本原理 通过一个变换,将输入图像的灰度级转换为`均匀分布`,变换后的灰度级的概率密度函数为 $$P_s(s) = \frac{1}{L-1}$$ 直方图均衡的变换为 $$s = T(r) = ...

  8. 中值滤波器(平滑空间滤波器)基本原理及Python实现

    1. 基本原理 一种典型的非线性滤波器就是中值滤波器,它使用像素的一个领域内的灰度的中值来代替该像素的值.中值滤波器通常是处理椒盐噪声的一种有效的手段. 2. 测试结果 图源自skimage 3. 代 ...

  9. 均值滤波器(平滑空间滤波器)基本原理及Python实现

    1. 基本原理 使用元素的领域内像素的平均值代替该元素,可明显的降低图像灰度的尖锐变换.它的一种重要应用是模糊处理:得到感兴趣的区域的粗略表示,将次要的/小的元素与背景融合,使得主要的/较大的元素变得 ...

随机推荐

  1. BFS(一):广度优先搜索的基本思想

    广度优先搜索BFS(Breadth First Search)也称为宽度优先搜索,它是一种先生成的结点先扩展的策略. 在广度优先搜索算法中,解答树上结点的扩展是按它们在树中的层次进行的.首先生成第一层 ...

  2. 并发编程-concurrent指南-阻塞队列-数组阻塞队列ArrayBlockingQueue

    ArrayBlockingQueue类是实现了BlockingQueue. ArrayBlockingQueue是一个有界的阻塞队列,其内部实现是将对象放在一个数组中. 放入元素方法: (1) add ...

  3. HDU 2795:Billboard(线段树)

    http://acm.hdu.edu.cn/showproblem.php?pid=2795 Billboard Problem Description   At the entrance to th ...

  4. 音频算法speex中的aec分析以及解析

    算法原理: Speex的AEC是以NLMS(Normalized Least Mean Square)为基础,用MDF(multidelay block frequency domain)频域实现,最 ...

  5. 利用consul在spring boot中实现最简单的分布式锁

    因为在项目实际过程中所采用的是微服务架构,考虑到承载量基本每个相同业务的服务都是多节点部署,所以针对某些资源的访问就不得不用到用到分布式锁了. 这里列举一个最简单的场景,假如有一个智能售货机,由于机器 ...

  6. 关于AndroidStudio在编译时无法解析和拉取依赖的问题和无法访问Jcenter服务器的问题

    问题描述:在编译时出现如下错误:Unknown host 'd29vzk4ow07wi7.cloudfront.net'. You may need to adjust the....一般是被墙了.偶 ...

  7. ecshop面包屑修改

    找到includes 找到lib_main.php 大约163样左右 /* 处理有分类的 */这段代码下面的一行修改成的对应的自己网站的分类,类似这样: 注释掉180行到194行左右,然后添加自己的分 ...

  8. Spring Cloud学习(一):Eureka服务注册与发现

    1.Eureka是什么 Eureka是Netflix开发的服务发现框架,本身是一个基于REST的服务,主要用于定位运行在AWS域中的中间层服务,以达到负载均衡和中间层服务故障转移的目的. Eureka ...

  9. Java+eclipse技巧小总结

    首先是打开Content Assistant,自动代码补全 Window -> Preferences -> Java -> Editor -> Content Assist, ...

  10. CentOS 7.3 配置静态ip

    镜像:CentOS-7-x86_64-DVD-1511.iso 1.修改.查看虚拟机的网段 1.1.查看虚拟机网段 编辑-> 虚拟机网络编辑器,修改的需要管理员权限 选择NAT模式 点击 NAT ...