=============== 分割线之下摘自Sasuke_SCUT的blog=============

最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T,并且T中所有边的总权值最小。最小树形图的第一个算法是 1965年朱永津和刘振宏提出的复杂度为O(VE)的算法。 判断是否存在树形图的方法很简单,只需要以v为根作一次图的遍历就可以了,所以下面的 算法中不再考虑树形图不存在的情况。 在所有操作开始之前,我们需要把图中所有的自环全都清除。很明显,自环是不可能在任何一个树形图上的。只有进 行了这步操作,总算法复杂度才真正能保证是O(VE)。 首先为除根之外的每个点选定一条入边,这条入边一定要是所有入边中最小的。现在所有的最小 入边都选择出来了,如果这个入边集不存在有向环的话,我们可以证明这个集合就是该图的最小树形图。这个证明并不是很难。如果存在有向环的话,我们就要将这 个有向环所称一个人工顶点,同时改变图中边的权。假设某点u在该环上,并设这个环中指向u的边权是in[u],那么对于每条从u出发的边(u, i, w),在新图中连接(new, i, w)的边,其中new为新加的人工顶点; 对于每条进入u的边(i, u, w),在新图中建立边(i, new, w-in[u])的边。为什么入边的权要减去in[u],这个后面会解释,在这里先给出算法的步骤。然后可以证明,新图中最小树形图的权加上旧图中被收缩 的那个环的权和,就是原图中最小树形图的权。 上面结论也不做证明了。现在依据上面的结论,说明一下为什么出边的权不变,入边的权要减去in [u]。对于新图中的最小树形图T,设指向人工节点的边为e。将人工节点展开以后,e指向了一个环。假设原先e是指向u的,这个时候我们将环上指向u的边 in[u]删除,这样就得到了原图中的一个树形图。我们会发现,如果新图中e的权w'(e)是原图中e的权w(e)减去in[u]权的话,那么在我们删除 掉in[u],并且将e恢复为原图状态的时候,这个树形图的权仍然是新图树形图的权加环的权,而这个权值正是最小树形图的权值。所以在展开节点之后,我们 得到的仍然是最小树形图。逐步展开所有的人工节点,就会得到初始图的最小树形图了。 如果实现得很聪明的话,可以达到找最小入边O(E),找环 O(V),收缩O(E),其中在找环O(V)这里需要一点技巧。这样每次收缩的复杂度是O(E),然后最多会收缩几次呢?由于我们一开始已经拿掉了所有的 自环,我门可以知道每个环至少包含2个点,收缩成1个点之后,总点数减少了至少1。当整个图收缩到只有1个点的时候,最小树形图就不不用求了。所以我们最 多只会进行V-1次的收缩,所以总得复杂度自然是O(VE)了。由此可见,如果一开始不除去自环的话,理论复杂度会和自环的数目有关。

======================== 分割线之上摘自Sasuke_SCUT的blog=====================================================
下 面是朱刘算法的构造图

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 110;
const double inf = 1e10;
struct point{
double x,y;
}arr[maxn];
struct node{
int u,v;
double cost;
}edge[maxn*maxn*10];
int vis[maxn],pre[maxn],ID[maxn];
double in[maxn];
int n,m;
double lenth(point a,point b){
return sqrt(pow(a.x-b.x,2) + pow(a.y-b.y,2));
}
double zhu_liu(int root){
int i,u,v;
double ans = 0;
while( 1 ){
for( i = 0; i < n; i++)in[i] = inf;
//1.找最小边
for( i = 0; i < m; i++){
u = edge[i].u;
v = edge[i].v;
if( edge[i].cost > in[v] || u == v)continue;
in[v] = edge[i].cost;
pre[v] = u;
}
for( i = 0; i < n; i++)//当存在除了根外还有不可达的点时,返回-1
if( root != i && in[i] == inf)return -1; int cntnode = 0;
memset(vis,-1,sizeof(vis));
memset(ID,-1,sizeof(ID));
in[root] = 0;
//2.找环
for( i = 0; i < n; i++){
ans += in[i];
v = i;
while( vis[v] != i && ID[v] == -1 && v != root){
vis[v] = i;
v = pre[v];
}
if( v != root && ID[v] == -1){
for( u = pre[v]; u != v; u = pre[u])
ID[u] = cntnode;
ID[v] = cntnode++;
}
}
if( cntnode == 0)break;//不存在环,则结束循环
//3.缩点和重标记
for( i = 0; i < n; i++)
if( ID[i] == -1)ID[i] = cntnode++;
for( i = 0; i < m; i++){
int u = edge[i].u,v = edge[i].v;
edge[i].u = ID[u];
edge[i].v = ID[v];
if( edge[i].u != edge[i].v)
edge[i].cost -= in[v];
}
n = cntnode;
root = ID[root];
}
return ans;
}
int main(){
int i;
//freopen("in.txt","r",stdin);
while(~scanf("%d%d",&n,&m)){
for( i = 0; i < n; i++)
scanf("%lf%lf",&arr[i].x,&arr[i].y);
for( i = 0; i < m; i++){
scanf("%d%d",&edge[i].u,&edge[i].v);
edge[i].u--;edge[i].v--;
if(edge[i].u == edge[i].v)
edge[i].cost = inf;
else edge[i].cost = lenth(arr[edge[i].u],arr[edge[i].v]);
}
double ans = zhu_liu(0);
if( ans == -1)puts("poor snoopy");
else printf("%.2lf\n",ans);
}
return 0;
}

  

POJ 3164 Command Network 最小树形图 朱刘算法的更多相关文章

  1. POJ 3164 Command Network 最小树形图

    题目链接: 题目 Command Network Time Limit: 1000MS Memory Limit: 131072K 问题描述 After a long lasting war on w ...

  2. POJ - 3164-Command Network 最小树形图——朱刘算法

    POJ - 3164 题意: 一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 题目就是求这个最小的树形图. 参考资料:https://blog.csdn.net/ ...

  3. POJ 3164 Command Network 最小树形图模板

    最小树形图求的是有向图的最小生成树,跟无向图求最小生成树有很大的区别. 步骤大致如下: 1.求除了根节点以外每个节点的最小入边,记录前驱 2.判断除了根节点,是否每个节点都有入边,如果存在没有入边的点 ...

  4. 最小树形图——朱刘算法(Edmonds)

    定义:一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 朱刘算法实现过程: [在选出入边集后(看步骤1),若有向图中不存在有向环,说明该图就是最小树形图] 1,选入 ...

  5. POJ 3164 Command Network ( 最小树形图 朱刘算法)

    题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...

  6. poj3164(最小树形图&朱刘算法模板)

    题目链接:http://poj.org/problem?id=3164 题意:第一行为n, m,接下来n行为n个点的二维坐标, 再接下来m行每行输入两个数u, v,表点u到点v是单向可达的,求这个有向 ...

  7. 最小树形图--朱刘算法([JSOI2008]小店购物)

    题面 luogu Sol 首先设一个 \(0\) 号点,向所有点连边,表示初始价值 显然这个图的一个 \(0\) 为根的最小有向生成树的边权和就是每个买一次的最小价值 再买就一定能优惠(包含 \(0\ ...

  8. 洛谷P4716 【模板】最小树形图(朱刘算法)

    题意 题目链接 Sol 朱刘算法?感觉又是一种神仙贪心算法 大概就是每次贪心的用每个点边权最小的入边更新答案,如果不行的话就缩起来找其他的边 不详细说了,丢链接走人.. #include<bit ...

  9. bzoj 4349 最小树形图——朱刘算法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4349. 学习博客:http://www.cnblogs.com/xzxl/p/7243466 ...

随机推荐

  1. set和map结构,class类

    1.set数据结构和map数据结构: (1)set: 数据结构set(集合,无序且值不能重复的数据集合,特点是key值和value值相同,没有重复的value //1 创建set ,,]) conso ...

  2. FB的新专利竟要监看使用者的脸

    大家应该会很好奇Facebook又在搞什么新花招,这个专利的名称是"Techniques for emotion detection and content delivery",其 ...

  3. Jquery事件和选择器 纠错

    1: 试题分析:该题考的是jQuery中事件绑定的知识.绑定事件用bind()方法,选项A是正确的绑定事件语法,因此是正确的答案.选项BCD的语法是错误的. 2: 试题分析:opacity 必需.规定 ...

  4. 【Java例题】7.3 线程题3-素数线程

    3.素数线程.设计一个线程子类,依次随机产生10000个随机整数(100-999):再设计另一个线程子类,依次对每一个随机整数判断是不是素数,是则显示:然后编写主类,在主函数中定义这两个线程类的线程对 ...

  5. Go中的字符串使用----strings和strconv

    Go中的字符串操作 字符串是工作中最常用的,值得我们专门的练习一下.在Go中使用strings包来操作字符串,这也是内置的包哈,不像Java中要么手写,要么引入common-lang 或者 别的第三方 ...

  6. pycharm的安装配置及思维导图

    1.1 计算机基础知识 主板:人的骨架,用于扩展设备的 cpu:人的大脑,用于计算和逻辑处理的 硬盘:存储数据(永久存储) 电源:人的心脏 内存:存储数据(临时存储) 断电即消失 操作系统 xp wi ...

  7. windows下通过idea连接hadoop和spark集群

    ###windows下链接hadoop集群 1.假如在linux机器上已经搭建好hadoop集群 2.在windows上把hadoop的压缩包解压到一个没有空格的目录下,比如是D盘根目录 3.配置环境 ...

  8. temperatureConversion1

    (原题:https://www.python123.io/student/courses/934/groups/8102/problems/programmings/6078) Solution: # ...

  9. Springboot 优雅停止服务的几种方法

    在使用Springboot的时候,都要涉及到服务的停止和启动,当我们停止服务的时候,很多时候大家都是kill -9 直接把程序进程杀掉,这样程序不会执行优雅的关闭.而且一些没有执行完的程序就会直接退出 ...

  10. React单页面应用使用antd的锚点跳转失效

    首先在react项目中引用antd的锚点 import {Anchor} from 'antd';const { Link } = Anchor; <Anchor> <Link hr ...