import numpy as np
import pandas as pd

认识

Time series data is an impotant from of data in many different fields, such as finance, economics, ecology, neuroscience(神经学) and physics. Anything that is observed or measured at many points in time forms a time series.

Many time series are fixed frequency , which is to say that data points occur at regular intervals according to some rule, such as every 15 seconds, every 5 minutes, or once per month.

Time series can also be irregular(不规则的) without a fixed unit of time or offset between units. How you mark and refer to time series data depends on the application, and you may have one of the following:

  • Timestamps, specific instants in time (时间戳)
  • Fixed periods, such as the month January 2007 or the full year 2010 (时期)
  • Intervals of time, indicated by a start and end timestamp. Periods can be thought of as special cases of intervals. (时间间隔)
  • Experiment or elapsed time(试验时间逝去); each timestamp is a measure of time relative to a particular start time (e.g. the diameter(直径) of a cookie baking each second since being palced in the oven)

In this chapter, I am mainly concerned with time series in the first three categories, though many of the teachniques can applied to experimental time series where the index may be an integer or floating-point number indicating elapsed time from the start of the experiment. The simplest and most widely used kind of time series are those indexed by timestamp.

pandas also supports indexes based on timedeltas, which can be a useful way of representing experiment or elapsed time. We do not explore timedelta indexes in this book , but you can learn more in the pandas documenttaion.

pandas provides many buit-in time series tools and data algorithims. You can efficiently work with very large time series and easily slice and dice, aggregate, and resample(重采样) irrgular-and fixed-frequency time series. Some of these tools are especially useful financial and economics applications, but you could certainly use them to analyze server log, too.

The Pyhton standard library includes data types for date and time data, as well as calendar-related(日历相关) functionality. The datetime, time, calendar modules are the main places to start. the datetime.datetime type, or simply datetime, is widely used.

from datetime import datetime
now = datetime.now()

now
datetime.datetime(2019, 4, 27, 15, 3, 14, 103616)
now.year, now.month, now.day, now.hour, now.minute
(2019, 4, 27, 15, 3)

datetime stores(存储) both the date and time down to the microsecond timedelta reprecents the temporal(临时的) difference between two datetime objects:

"cj 特方便, 在时间相加上"

delta = datetime(2011, 1, 7) - datetime(2008, 6, 24, 8, 15)

delta
'cj 特方便, 在时间相加上'

datetime.timedelta(926, 56700)
delta.days, delta.seconds
(926, 56700)

You can add (or subtract) a timedelata or multiple thereof to a datetime object to yield a new shifted object:

from datetime import timedelta
start = datetime(2011, 1, 7)

"加12天"
start + timedelta(12)
'加12天'

datetime.datetime(2011, 1, 19, 0, 0)
" 减去24天"
start - 2*timedelta(12)
' 减去24天'

datetime.datetime(2010, 12, 14, 0, 0)

Table 11-1 summarizes the data types in the datetime module. While this chapter is mainly concerned with the data types in pandas and high-level time series manupulation, you may encounter the datetime-based types in many other places in Pyhton in the wild.

Type Description
date Store calendar date (year, month, day) using the Gregorian calendar
time Store time of day as hours,minutes, seconds, and microseconds
datetime Store both date and time
timedelta Reprecents the difference between tow datetime values(as days,second..)
tzinfo Base type for storing time zone infomation

String和Datetime间的转换

You can format datetime object and pandas Timestamp objects, which I'll introduce later, as strings using str or the strftime method, passing a format specification:

stamp = datetime(2011, 1, 3)

stamp
str(stamp)
datetime.datetime(2011, 1, 3, 0, 0)

'2011-01-03 00:00:00'
stamp.strftime('%Y-%m-%d')  # 四位数字的年
'2011-01-03'
stamp.strftime('%y-%m-%d')  # 2位数字的年
'11-01-03'

See Table 11-2 for a complete list of the format codes.

Type Description
%Y Four-digit year(4个数字的年)
%y Two-digit year
%m Two-dight month [01, 12]
%d Two-dight day [01, 31]
%H Hour(24-hour clock) [00, 23]
%I Hour(12-hour clock) [00, 12])
%M Two-dight minute [00, 59]
%S Second [00, 61] (second 60, 61 acccount for leap second)
%w Weekday as integer[0(Sundday), 6]
%U
%W
%z UTC time zone offset as +HHMM or -HHMM; empty if time zone naive
%F Shortcut for %Y-%m-%d (eg. 2012-4-8)
%D Shortcut for %m/%d/%y (eg. 04/18/12)

You can use these same format codes to convert strings to dates using date time.strptime:

value = "2011-01-03"
datetime.strptime(value, '%Y-%m-%d')
datetime.datetime(2011, 1, 3, 0, 0)
datestrs = ['7/6/2011', '8/6/2011']

[datetime.strptime(x, '%m/%d/%Y') for x in datestrs]
[datetime.datetime(2011, 7, 6, 0, 0), datetime.datetime(2011, 8, 6, 0, 0)]

Datetime.strptime is a good way to parse a date with a know format. However, it can be a bit annoying to have to write a format spec each time, especially for common date formats.In this case, you can use the parse.parse method in the third-party dateutil package (this is installed automatically when you install pandas).

from dateutil.parser import parse
parse("2011-01-03")
datetime.datetime(2011, 1, 3, 0, 0)
parse("2011/01/03")
datetime.datetime(2011, 1, 3, 0, 0)

dateutil si capable of parsing most human-intelligble date representation:

parse('Jan 31, 1997, 10:45 PM')
datetime.datetime(1997, 1, 31, 22, 45)

In international locales, day appering before month is very common, so you can pass dayfirst=True to indicate this:

parse('6/12/2011', dayfirst=True)
datetime.datetime(2011, 12, 6, 0, 0)

pandas is generally oriented toward working with arrays of dates, whether used an axis index or a column in a DataFrame. The to_datetime method parses many different kinds of date representations. Standard date formats like ISO 8601 can be parsed very quickly:

datestrs = ['2011-07-06 12:00:00', '2011-08-06 00:00:00']

pd.to_datetime(datestrs)
DatetimeIndex(['2011-07-06 12:00:00', '2011-08-06 00:00:00'], dtype='datetime64[ns]', freq=None)

It also handles values that should be condidered missing (None, empty string. etc.):

idx = pd.to_datetime(datestrs + [None])

idx
DatetimeIndex(['2011-07-06 12:00:00', '2011-08-06 00:00:00', 'NaT'], dtype='datetime64[ns]', freq=None)
idx[2]
NaT
pd.isnull(idx)
array([False, False,  True])

NaT (Not a Time) is pandas's null value for timestamp data.

dateutil.parser is a useful but imperfect tool. Notably, it will recognize some strings as dates that you might prefer that it didn't for example. '42' will be parsed as the year 2042 with today's ccalendar date.

datetime objects also have a number of locale-specific formatting options for systems in other countries or languages. For example, the abbreviated(缩写) month names will be different on German or French systems compared with English systme. See Table 11-3 for a listing.

  • %a Abbreviated weekday name
  • %A Full weekday name
  • %b 缩写月份的名字
  • %B 全写月份
  • %c Full date and time (eg. Tue 01 May 2012 04:20:57 PM)
  • %p 包含AM or PM
  • %x (eg. '05/01/2012')
  • %X (eg. '04:24:12 PM')

pandas 之 datetime 初识的更多相关文章

  1. python之pandas学习笔记-初识pandas

    初识pandas python最擅长的就是数据处理,而pandas则是python用于数据分析的最常用工具之一,所以学python一定要学pandas库的使用. pandas为python提供了高性能 ...

  2. Pandas 数据处理 | Datetime 在 Pandas 中的一些用法!

    Datatime 是 Python 中一种时间数据类型,对于不同时间格式之间的转换是比较方便的,而在 Pandas 中也同样支持 DataTime 数据机制,可以借助它实现许多有用的功能,例如 1,函 ...

  3. Pandas 基础(1) - 初识及安装 yupyter

    Hello, 大家好, 昨天说了我会再更新一个关于 Pandas 基础知识的教程, 这里就是啦......Pandas 被广泛应用于数据分析领域, 是一个很好的分析工具, 也是我们后面学习 machi ...

  4. 整理总结 python 中时间日期类数据处理与类型转换(含 pandas)

    我自学 python 编程并付诸实战,迄今三个月. pandas可能是我最高频使用的库,基于它的易学.实用,我也非常建议朋友们去尝试它.--尤其当你本身不是程序员,但多少跟表格或数据打点交道时,pan ...

  5. (转) Using the latest advancements in AI to predict stock market movements

    Using the latest advancements in AI to predict stock market movements 2019-01-13 21:31:18 This blog ...

  6. Python基础 | 日期时间操作

    目录 获取时间 时间映射 格式转换 字符串转日期 日期转字符串 unixtime 时间计算 时间偏移 时间差 "日期时间数据"作为三大基础数据类型之一,在数据分析中会经常遇到. 本 ...

  7. pandas中将timestamp转为datetime

    参考自:http://stackoverflow.com/questions/35312981/using-pandas-to-datetime-with-timestamps 在pandas Dat ...

  8. pandas处理时间序列(1):pd.Timestamp()、pd.Timedelta()、pd.datetime( )、 pd.Period()、pd.to_timestamp()、datetime.strftime()、pd.to_datetime( )、pd.to_period()

      Pandas库是处理时间序列的利器,pandas有着强大的日期数据处理功能,可以按日期筛选数据.按日期显示数据.按日期统计数据.   pandas的实际类型主要分为: timestamp(时间戳) ...

  9. pandas初识

    pandas初识 1.生成DataFrame型的数据 import pandas as pd import numpy as np dates = pd.date_range('20130101',p ...

随机推荐

  1. mmap - 内存映射文件 - 减少一次内核空间内数据向用户空间数据拷贝的操作

    关于mmap 网上有很多有用的文章,我这里主要记录,日常使用到mmap时的理解: https://www.cnblogs.com/huxiao-tee/p/4660352.html 测试代码: htt ...

  2. GPU驱动安装&cuda

    版权声明:本文为博主原创文章,支持原创,转载请附上原文出处链接和本声明.  本文链接地址:https://www.cnblogs.com/wannengachao/p/11947668.html 驱动 ...

  3. CF613B Skills

    CF613B Skills 洛谷评测传送门 题目描述 Lesha plays the recently published new version of the legendary game hack ...

  4. luoguP4151 [WC2011]最大XOR和路径

    题意 这题有点神啊. 首先考虑注意这句话: 路径可以重复经过某些点或边,当一条边在路径中出现了多次时,其权值在计算 XOR 和时也要被计算相应多的次数 也就是说如果出现下面的情况: 我们可以通过异或上 ...

  5. github上fork的项目,如何同步原作者更新的内容?

    一.引言   我在github上fork了一个项目,之后原作者又更新了内容,我想把原作者更新的内容同步到我fork的项目仓库中.在此记录一下同步步骤. 二.同步步骤 打开fork的项目的主页,点击Ne ...

  6. python中实现单例模式

    单例模式的目的是一个类有且只有一个实例对象存在,比如在复用类的过程中,可能重复创建多个实例,导致严重浪费内存,此时就适合使用单例模式. 前段时间需要用到单例模式,就称着机会在网上找了找,有包含了__n ...

  7. INVERSION包

    1.安装该包 if (!requireNamespace("BiocManager", quietly = TRUE))install.packages("BiocMan ...

  8. 使用Vue封装暂无数据占位图组件

    1. 前言 在日常开发中,页面上肯定有展示数据的需求,但是当某些时候该展示数据的地方此时数据为空时,就会留下一片空白,对用户体验不是很好,那么接下来我们就封装一个空数据时的占位展示图,告诉用户此时用户 ...

  9. sql 合并结果集数据

    起因:项目上查询一些数据,需要将查询后的结果合并到一列中. 1.STUFF函数 官方api: https://docs.microsoft.com/zh-cn/sql/t-sql/functions/ ...

  10. 从应用到内核,分析top命令显示的进程名包含中括号"[]"的含义

    背景 在执行top/ps命令的时候,在COMMAND一列,我们会发现,有些进程名被[]括起来了,例如 PID PPID USER STAT VSZ %VSZ %CPU COMMAND 1542 928 ...