背景介绍

从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维。陆续使用过plotly、seaborn,最终定格在了Bokeh,因为它可以与Flask完美的结合,数据看板的开发难度降低了很多。

前阵子看到这个库可以较为便捷的实现数据探索,今天得空打算学习一下。原本访问的是英文文档,结果发现已经有人在做汉化,虽然看起来也像是谷歌翻译的,本着拿来主义,少费点精力的精神,就半抄半学,还是发现了一些与文档不太一致的地方。

# http://www.scikit-yb.org/zh/latest/tutorial.html

模型选择教程

在本教程中,我们将查看各种 Scikit-Learn 模型的分数,并使用 Yellowbrick 的可视化诊断工具对其进行比较,以便为我们的数据选择最佳模型。

模型选择三元组

关于机器学习的讨论常常集中在模型选择上。无论是逻辑回归、随机森林、贝叶斯方法,还是人工神经网络,机器学习实践者通常都能很快地展示他们的偏好。这主要是因为历史原因。尽管现代的第三方机器学习库使得各类模型的部署显得微不足道,但传统上,即使是其中一种算法的应用和调优也需要多年的研究。因此,与其他模型相比,机器学习实践者往往对特定的(并且更可能是熟悉的)模型有强烈的偏好。

然而,模型选择比简单地选择“正确”或“错误”算法更加微妙。实践中的工作流程包括:

选择和/或设计最小和最具预测性的特性集
从模型家族中选择一组算法,并且
优化算法超参数以优化性能。

模型选择三元组 是由Kumar 等人,在 2015 年的 SIGMOD 论文中首次提出。在他们的论文中,谈论到下一代为预测建模而构建的数据库系统的开发。作者很中肯地表示,由于机器学习在实践中具有高度实验性,因此迫切需要这样的系统。“模型选择,”他们解释道,“是迭代的和探索性的,因为(模型选择三元组)的空间通常是无限的,而且通常不可能让分析师事先知道哪个(组合)将产生令人满意的准确性和/或洞察力。”

最近,许多工作流程已经通过网格搜索方法、标准化 API 和基于 GUI 的应用程序实现了自动化。然而,在实践中,人类的直觉和指导可以比穷举搜索更有效地专注于模型质量。通过可视化模型选择过程,数据科学家可以转向最终的、可解释的模型,并避免陷阱。

Yellowbrick 库是一个针对机器学习的可视化诊断平台,它允许数据科学家控制模型选择过程。Yellowbrick 用一个新的核心对象扩展了Scikit-Learn 的 API: Visualizer。Visualizers 允许可视化模型作为Scikit-Learn管道过程的一部分进行匹配和转换,从而在高维数据的转换过程中提供可视化诊断。

关于数据

本教程使用来自 UCI Machine Learning Repository 的修改过的蘑菇数据集版本。我们的目标是基于蘑菇的特定,去预测蘑菇是有毒的还是可食用的。

这些数据包括与伞菌目(Agaricus)和环柄菇属(Lepiota)科中23种烤蘑菇对应的假设样本描述。 每一种都被确定为绝对可食用,绝对有毒,或未知的可食用性和不推荐(后一类与有毒物种相结合)。

我们的文件“agaricus-lepiota.txt”,包含3个名义上有价值的属性信息和8124个蘑菇实例的目标值(4208个可食用,3916个有毒)。

让我们用Pandas加载数据。

import os
import pandas as pd
mushrooms = 'data/shrooms.csv' # 数据集
dataset = pd.read_csv(mushrooms)
# dataset.columns = names
dataset.head()

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
id class cap-shape cap-surface cap-color bruises odor gill-attachment gill-spacing gill-size ... stalk-color-above-ring stalk-color-below-ring veil-type veil-color ring-number ring-type spore-print-color population habitat Unnamed: 24
0 1 p x s n t p f c n ... w w p w o p k s u NaN
1 2 e x s y t a f c b ... w w p w o p n n g NaN
2 3 e b s w t l f c b ... w w p w o p n n m NaN
3 4 p x y w t p f c n ... w w p w o p k s u NaN
4 5 e x s g f n f w b ... w w p w o e n a g NaN

5 rows × 25 columns

features = ['cap-shape', 'cap-surface', 'cap-color']
target = ['class']
X = dataset[features]
y = dataset[target]
dataset.shape # 较官方文档少了俩蘑菇
(8122, 25)
dataset.groupby('class').count() # 各少了1个蘑菇

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
id cap-shape cap-surface cap-color bruises odor gill-attachment gill-spacing gill-size gill-color ... stalk-color-above-ring stalk-color-below-ring veil-type veil-color ring-number ring-type spore-print-color population habitat Unnamed: 24
class
e 4207 4207 4207 4207 4207 4207 4207 4207 4207 4207 ... 4207 4207 4207 4207 4207 4207 4207 4207 4207 0
p 3915 3915 3915 3915 3915 3915 3915 3915 3915 3915 ... 3915 3915 3915 3915 3915 3915 3915 3915 3915 0

2 rows × 24 columns

特征提取

我们的数据,包括目标参数,都是分类型数据。为了使用机器学习,我们需要将这些值转化为数值型数据。为了从数据集中提取这一点,我们必须使用Scikit-Learn的转换器(transformers)将输入数据集转换为适合模型的数据集。幸运的是,Sckit-Learn提供了一个转换器,用于将分类标签转换为整数: sklearn.preprocessing.LabelEncoder。不幸的是,它一次只能转换一个向量,所以我们必须对它进行调整,以便将它应用于多个列。

有疑问,这个蘑菇分类就是一个向量?

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
class EncodeCategorical(BaseEstimator, TransformerMixin):
"""
Encodes a specified list of columns or all columns if None.
""" def __init__(self, columns=None):
self.columns = [col for col in columns]
self.encoders = None def fit(self, data, target=None):
"""
Expects a data frame with named columns to encode.
"""
# Encode all columns if columns is None
if self.columns is None:
self.columns = data.columns # Fit a label encoder for each column in the data frame
self.encoders = {
column: LabelEncoder().fit(data[column])
for column in self.columns
}
return self def transform(self, data):
"""
Uses the encoders to transform a data frame.
"""
output = data.copy()
for column, encoder in self.encoders.items():
output[column] = encoder.transform(data[column]) return output

建模与评估

评估分类器的常用指标

精确度(Precision) 是正确的阳性结果的数量除以所有阳性结果的数量(例如,我们预测的可食用蘑菇实际上有多少?)

召回率(Recall) 是正确的阳性结果的数量除以应该返回的阳性结果的数量(例如,我们准确预测了多少有毒蘑菇是有毒的?)

F1分数(F1 score) 是测试准确度的一种衡量标准。它同时考虑测试的精确度和召回率来计算分数。F1得分可以解释为精度和召回率的加权平均值,其中F1得分在1处达到最佳值,在0处达到最差值。

precision = true positives / (true positives + false positives)

recall = true positives / (false negatives + true positives)

F1 score = 2 * ((precision * recall) / (precision + recall))

现在我们准备好作出一些预测了!

让我们构建一种评估多个估算器(multiple estimators)的方法 —— 首先使用传统的数值分数(我们稍后将与Yellowbrick库中的一些可视化诊断进行比较)。

from sklearn.metrics import f1_score
from sklearn.pipeline import Pipeline
def model_selection(X, y, estimator):
"""
Test various estimators.
"""
y = LabelEncoder().fit_transform(y.values.ravel())
model = Pipeline([
('label_encoding', EncodeCategorical(X.keys())),
('one_hot_encoder', OneHotEncoder(categories='auto')), # 此处增加自动分类,否则有warning
('estimator', estimator)
]) # Instantiate the classification model and visualizer
model.fit(X, y) expected = y
predicted = model.predict(X) # Compute and return the F1 score (the harmonic mean of precision and recall)
return (f1_score(expected, predicted))
from sklearn.svm import LinearSVC, NuSVC, SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegressionCV, LogisticRegression, SGDClassifier
from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier
model_selection(X, y, LinearSVC())
0.6582119537920643
import warnings
warnings.filterwarnings("ignore", category=FutureWarning, module="sklearn") # 忽略警告
model_selection(X, y, NuSVC())
0.6878837238441299
model_selection(X, y, SVC())
0.6625145971195017
model_selection(X, y, SGDClassifier())
0.5738408700629649
model_selection(X, y, KNeighborsClassifier())
0.6856846473029046
model_selection(X, y, LogisticRegressionCV())
0.6582119537920643
model_selection(X, y, LogisticRegression())
0.6578749058025622
model_selection(X, y, BaggingClassifier())
0.6873901878632248
model_selection(X, y, ExtraTreesClassifier())
0.6872294372294372
model_selection(X, y, RandomForestClassifier())
0.6992081007399714

初步模型评估

根据上面F1分数的结果,哪个模型表现最好?

可视化模型评估

现在,让我们重构模型评估函数,使用Yellowbrick的ClassificationReport类,这是一个模型可视化工具,可以显示精确度、召回率和F1分数。这个可视化的模型分析工具集成了数值分数以及彩色编码的热力图,以支持简单的解释和检测,特别是对于我们用例而言非常相关(性命攸关!)的第一类错误(Type I error)和第二类错误(Type II error)的细微差别。

第一类错误 (或 "假阳性(false positive)" ) 是检测一种不存在的效应(例如,当蘑菇实际上是可以食用的时候,它是有毒的)。

第二类错误 (或 “假阴性”"false negative" ) 是未能检测到存在的效应(例如,当蘑菇实际上有毒时,却认为它是可以食用的)。

from sklearn.pipeline import Pipeline
from yellowbrick.classifier import ClassificationReport def visual_model_selection(X, y, estimator):
"""
Test various estimators.
"""
y = LabelEncoder().fit_transform(y.values.ravel())
model = Pipeline([
('label_encoding', EncodeCategorical(X.keys())),
('one_hot_encoder', OneHotEncoder()),
('estimator', estimator)
]) # Instantiate the classification model and visualizer
visualizer = ClassificationReport(model, classes=['edible', 'poisonous'])
visualizer.fit(X, y)
visualizer.score(X, y)
visualizer.poof()
visual_model_selection(X, y, LinearSVC())

# 其他分类器可视化略
visual_model_selection(X, y, RandomForestClassifier())

检验

现在,哪种模型看起来最好?为什么?
哪一个模型最有可能救你的命?
可视化模型评估与数值模型评价,体验起来有何不同?

准确率Precision召回率Recall以及综合评价指标F1-Measure

http://www.makaidong.com/博客园热文/437.shtml

f1-score综合考虑的准确率和召回率。

可视化就是直观嘛,逃~


作者简介

知乎yeayee,Py龄5年,善Flask+MongoDB+SKlearn+Bokeh

Python机器学习之数据探索可视化库yellowbrick-tutorial的更多相关文章

  1. Python机器学习之数据探索可视化库yellowbrick

    # 背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维.陆续使用过plot ...

  2. python数据挖掘之数据探索第一篇

    目录 数据质量分析   当我们得到数据后,接下来就是要考虑样本数据集的数据和质量是否满足建模的要求?是否出现不想要的数据?能不能直接看出一些规律或趋势?每个因素之间的关系是什么?   通过检验数据集的 ...

  3. 一个采用python获取股票数据的开源库,相当全,及一些量化投资策略库

    tushare: http://tushare.waditu.com/index.html 为什么是Python? 就跟javascript在web领域无可撼动的地位一样,Python也已经在金融量化 ...

  4. 数据挖掘(二)用python实现数据探索:汇总统计和可视化

    今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处 ...

  5. Python数据可视化库-Matplotlib(一)

    今天我们来学习一下python的数据可视化库,Matplotlib,是一个Python的2D绘图库 通过这个库,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率图,条形图,错误图,散点图等等 废 ...

  6. 常用python机器学习库总结

    开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...

  7. [Python] 机器学习库资料汇总

    声明:以下内容转载自平行宇宙. Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: ...

  8. [resource]Python机器学习库

    reference: http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块: ...

  9. Pycon 2017: Python可视化库大全

    本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visua ...

随机推荐

  1. 【POJ - 1573】Robot Motion

    -->Robot Motion 直接中文 Descriptions: 样例1 样例2 有一个N*M的区域,机器人从第一行的第几列进入,该区域全部由'N' , 'S' , 'W' , 'E' ,走 ...

  2. Apache struts2 Freemarker标签远程命令执行_CVE-2017-12611(S2-053)漏洞复现

    Apache struts2 Freemarker标签远程命令执行_CVE-2017-12611(S2-053)漏洞复现 一.漏洞描述 Struts2在使用Freemarker模块引擎的时候,同时允许 ...

  3. 【小家Spring】老项目迁移问题:@ImportResource导入的xml配置里的Bean能够使用@PropertySource导入的属性值吗?

    #### 每篇一句 > 大师都是偏执的,偏执才能产生力量,妥协是没有力量的.你对全世界妥协了你就是空气.所以若没有偏见,哪来的大师呢 #### 相关阅读 [[小家Spring]详解Propert ...

  4. UVA1327 && POJ1904 King's Quest(tarjan+巧妙建图+强连通分量+缩点)

    UVA1327 King's Quest POJ1904 King's Quest 题意: 有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚.现有一个匹配表,将每个王子都与一个自己 ...

  5. HiLoGenerator生成id

    using System.Linq; namespace Product.Host { public class HiLoGenerator { ; ; ; private object Sequen ...

  6. JVM的内存区域

    Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域, 包含程序计数器.虚拟机栈.本地方法栈.Java堆.方法区(运行时常量池).直接内存等,不同的版本会有所差异 各区 ...

  7. redis分布式锁的问题和解决

    分布式锁 在分布式环境中,为了保证业务数据的正常访问,防止出现重复请求的问题,会使用分布式锁来阻拦后续请求.具体伪代码如下: public void doSomething(String userId ...

  8. Excel催化剂开源第47波-Excel与PowerBIDeskTop互通互联之第一篇

    当国外都在追求软件开源,并且在GitHub等平台上产生了大量优质的开源代码时,但在国内却在刮着一股收割小白智商税的知识付费热潮,实在可悲. 互联网的精神乃是分享,让分享带来更多人的受益. 在Power ...

  9. TensorFlow笔记-可视化Tensorboard

    可视化Tensorboard •数据序列化-events文件 TensorBoard 通过读取 TensorFlow 的事件文件来运行 •tf.summary.FileWriter('/tmp/ten ...

  10. c实现哲学家进餐问题。WINDOWS下。

    // 解决哲学家就餐问题// 每个哲学家可用一个线程来模拟.// 设有5个哲学家,5只筷子,每个哲学家吃饭时间为一个随机值,哲学家吃饭后的思考时间也是一个随机值.#include <Window ...