Luogu P3376

由于\(EK\)算法求最大流时每一次只求一条增广路,时间复杂度会比较高。尽管实际应用中表现比较优秀,但是有一些题目还是无法通过。

那么我们就会使用\(Dinic\)算法实现多路增广。

算法的基本流程如下:

  1. \(BFS\)对图进行分层,求出终点所在的层数
  2. \(DFS\)对每一条增广路的信息进行更新

仅仅这样看,虽然一次\(BFS\)能找到多条最短增广路,但是信息的更新仍然是逐条增广路进行更新,效率上并没有太大变化。

所以我们需要下面的两个优化:

  • 记录起点到节点\(P\)的流\(flow\)和节点\(P\)到终点的流\(used\)。若\(flow=used\),则不必再进行之后的\(DFS\)了,可以直接回溯。
  • 使用一个\(cur\)数组复制链式前向星的\(head\)数组,在\(DFS\)时,\(cur\)数组记录当前处理的边的编号。下次\(DFS\)到这个节点时,可以直接从\(cur\)数组记录的那条边开始。

第二个优化我们称之为当前弧优化

原理:每一条已经处理完毕的边,必然不能再容纳下更多的流了。

\(Dinic\)的时间复杂度是\(O(n^2m)\)。对于二分图匹配问题,\(Dinic\)的时间复杂度是\(O(m\sqrt n)\)

结合代码进行理解

#include<cstdio>
#include<queue>
using namespace std;
int n,m,num,cnt,u,v,head[20005],cur[20005],dis[20005],ans;
bool vis[20005];
struct data
{
int to,next,val;
}e[5000005];
void add(int u,int v,int val)
{
e[++cnt].to=v;
e[cnt].next=head[u];
head[u]=cnt;
e[cnt].val=val;
}
bool bfs(int s,int t)
{
queue<int> que;
que.push(s);
for (int i=1;i<=n;i++) dis[i]=0,vis[i]=false,cur[i]=head[i];
vis[s]=true;
dis[s]=1;
while (!que.empty())
{
int now=que.front();
que.pop();
for (int i=head[now];i;i=e[i].next)
{
v=e[i].to;
if (!vis[v]&&e[i].val>0)
{
dis[v]=dis[now]+1;
vis[v]=true;
if (v==t) return true;
que.push(v);
}
}
}
return false;
}
int dfs(int now,int t,int flow)
{
if (!flow||now==t) return flow;
int used=0;
for (int i=cur[now];i;i=e[i].next)
{
cur[now]=i;//当前弧优化
v=e[i].to;
if (dis[now]+1!=dis[v]) continue;
int tmp=dfs(v,t,min(flow-used,e[i].val));
if (tmp)
{
e[i].val-=tmp;
e[i^1].val+=tmp;
used+=tmp;
if (flow-used==0) return flow;
}
}
return used;
}
void Dinic(int s,int t)
{
while (bfs(s,t)) ans+=dfs(s,t,0x7fffffff);
}
int main()
{
int s,t,w;
scanf("%d%d%d%d",&n,&m,&s,&t);
cnt=1;
for (int i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
add(v,u,0);
}
Dinic(s,t);
printf("%d",ans);
return 0;
}

【网络流相关】最大流的Dinic算法实现的更多相关文章

  1. 网络流入门—用于最大流的Dinic算法

    "网络流博大精深"-sideman语 一个基本的网络流问题 最早知道网络流的内容便是最大流问题,最大流问题很好理解: 解释一定要通俗! 如右图所示,有一个管道系统,节点{1,2,3 ...

  2. 【最大流之Dinic算法】POJ1273 【 & 当前弧优化 & 】

    总评一句:Dinic算法的基本思想比较好理解,就是它的当前弧优化的思想,网上的资料也不多,所以对于当前弧的优化,我还是费了很大的功夫的,现在也一知半解,索性就写一篇博客,来发现自己哪里的算法思想还没理 ...

  3. 浅谈最大流的Dinic算法

    PART 1 什么是网络流 网络流(network-flows)是一种类比水流的解决问题方法,与线性规划密切相关.网络流的理论和应用在不断发展,出现了具有增益的流.多终端流.多商品流以及网络流的分解与 ...

  4. HDU1532最大流 Edmonds-Karp,Dinic算法 模板

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...

  5. POJ 1459 Power Network(网络最大流,dinic算法模板题)

    题意:给出n,np,nc,m,n为节点数,np为发电站数,nc为用电厂数,m为边的个数.      接下来给出m个数据(u,v)z,表示w(u,v)允许传输的最大电力为z:np个数据(u)z,表示发电 ...

  6. [模板] 网络流相关/最大流ISAP/费用流zkw

    最大流/ISAP 话说ISAP是真快...(大多数情况)吊打dinic,而且还好写... 大概思路就是: 在dinic的基础上, 动态修改层数, 如果终点层数 \(>\) 点数, break. ...

  7. 最大流:Dinic算法

    蒟蒻居然今天第一次写网络流 我太弱啦! 最大流问题有很多解法 虽然isap常数巨小 但是连dinic都写挂的本蒟蒻并不会orz 那么我们选用比较好实现的dinic来解决最大流问题 来一段定义:    ...

  8. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  9. 网络流最大流——dinic算法

    前言 网络流问题是一个很深奥的问题,对应也有许多很优秀的算法.但是本文只会讲述dinic算法 最近写了好多网络流的题目,想想看还是写一篇来总结一下网络流和dinic算法以免以后自己忘了... 网络流问 ...

随机推荐

  1. C++学习笔记1_ 指针.引用

    1.引用的本质struct typeA{ int &a;}struct typeB{ int *a;}int main(void){ cout<<sizeof(struct typ ...

  2. [2018-01-13] 什么是Django

    什么是Django? Django是一个基于Python的高级Web开发框架 它能够让开发人员进行高效且快速的开发 高度集成(不用自己造轮子),免费并且开源(内部已经实现了许多高级的功能) 浏览器浏览 ...

  3. CSPS模拟 76

    前序遍历,中序遍历,后序遍历 说的都是根节点在前,根节点在中,根节点在后. 长记性!

  4. 和manacher有关的乱写

    当初学kmp hash的时候被教导manacher非常的鸡肋 今天因为一篇神奇的题解我忍不住颓废了两节课把它学了 思路,代码都比较好懂 虽然它不如各种自动机霸气,唯一的功能貌似就是$O(n)$求出所有 ...

  5. Java描述设计模式(19):模板方法模式

    本文源码:GitHub·点这里 || GitEE·点这里 一.生活场景 通常一款互联网应用的开发流程如下:业务需求,规划产品,程序开发,测试交付.现在基于模板方法模式进行该过程描述. public c ...

  6. 来了!GitHub for mobile 发布!iOS beta 版已来,Android 版即将发布

    北京时间 2019 年 11 月 14 日,在 GitHub Universe 2019大会上,GitHub 正式发布了 GitHub for mobile,支持 iOS 与 Android 两大移动 ...

  7. window,sts安装python

    1.先在python官网下载最新的python安装,安装的时候勾上所有选项 官网:https://www.python.org/downloads/ 2.在sts里安装pyDev插件,我当时直接sea ...

  8. 判断DataGridView是否选中某行

    if (this.Drawing_GridView.SelectedColumns.Count == 0)//判断是否选中某行 { }

  9. 【并发编程】synchronized的使用场景和原理简介

    1. synchronized使用 1.1 synchronized介绍 在多线程并发编程中synchronized一直是元老级角色,很多人都会称呼它为重量级锁.但是,随着Java SE 1.6对sy ...

  10. [springboot 开发单体web shop] 7. 多种形式提供商品列表

    上文回顾 上节 我们实现了仿jd的轮播广告以及商品分类的功能,并且讲解了不同的注入方式,本节我们将继续实现我们的电商主业务,商品信息的展示. 需求分析 首先,在我们开始本节编码之前,我们先来分析一下都 ...