如何实现LRU算法?
1.什么是LRU算法?
LRU是一种缓存淘汰机制策略。
计算机的缓存容量有限,如果缓存满了就要删除一些内容,给新的内容腾位置。但是要删除哪些内容呢?我们肯定希望删掉那些没有用的缓存,而把有用的数据继续留在缓存中,方便之后继续使用。那么,什么样的数据我们可以判定为有用的数据呢?
LRU缓存淘汰算法就是一种常用策略。LRU的全称是Least Recently Used,也就是说我们认为最近使用过的数据应该是有用的,很久都没用过的数据应该是无用的,缓存满了就优先删除那些很久没有用过的数据。
举个简单的例子,安卓手机都可以吧软件放在后台运行,比如我先后打开了“设置”、“手机管家”、“日历”,那么现在他们在后台排列的顺序是这样的:
但是这时候如果我访问了一下“设置”界面,那么“设置”就会被提前到第一个,变成这样:
假设我的手机只允许我同时打开3个应用程序,现在已经满了。那么如果我新开了一个应用“时钟”,就必须关闭一个应用为“时钟”腾出一个位置,那么关闭哪个呢?
按照LRU的策略,就关最底下的“手机管家”,因为那是最久未使用的,然后把新开的应用放到最上面:
现在你应该理解LRU策略了,当然还有其他缓存策略,比如不要按访问的时序来淘汰,而是按访问频率(LFU策略)来淘汰等等,各有应用场景。本文讲解LRU算法策略。
2、LRU算法描述
LeetCode上有一道LRU算法设计的题目,让你设计一种数据结构,首先构造函数接受一个capacity参数作为缓存的最大容量,然后实现两个API:
一个是 put(key, val) 方法插入新的或更新已有键值对,如果缓存已满的话,要删除那个最久没用过的键值对以腾出位置插入。
另一个是 get(key) 方法获取 key 对应的 val,如果 key 不存在则返回 -1。
需要注意的是,get 和 put 方法必须都是 O(1) 的时间复杂度,我们举个具体例子来看看 LRU 算法怎么工作。
/* 缓存容量为 2 */
LRUCache cache = new LRUCache(2);
// 你可以把 cache 理解成一个队列
// 假设左边是队头,右边是队尾
// 最近使用的排在队头,久未使用的排在队尾
// 圆括号表示键值对 (key, val)
cache.put(1, 1);
// cache = [(1, 1)]
cache.put(2, 2);
// cache = [(2, 2), (1, 1)]
cache.get(1); // 返回 1
// cache = [(1, 1), (2, 2)]
// 解释:因为最近访问了键 1,所以提前至队头
// 返回键 1 对应的值 1
cache.put(3, 3);
// cache = [(3, 3), (1, 1)]
// 解释:缓存容量已满,需要删除内容空出位置
// 优先删除久未使用的数据,也就是队尾的数据
// 然后把新的数据插入队头
cache.get(2); // 返回 -1 (未找到)
// cache = [(3, 3), (1, 1)]
// 解释:cache 中不存在键为 2 的数据
cache.put(1, 4);
// cache = [(1, 4), (3, 3)]
// 解释:键 1 已存在,把原始值 1 覆盖为 4
// 不要忘了也要将键值对提前到队头
三、LRU 算法设计
分析上面的操作过程,要让 put 和 get 方法的时间复杂度为 O(1),我们可以总结出 cache 这个数据结构必要的条件:查找快,插入快,删除快,有顺序之分。
因为显然 cache 必须有顺序之分,以区分最近使用的和久未使用的数据;而且我们要在 cache 中查找键是否已存在;如果容量满了要删除最后一个数据;每次访问还要把数据插入到队头。
那么,什么数据结构同时符合上述条件呢?哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢。所以结合一下,形成一种新的数据结构:哈希链表。
LRU 缓存算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。这个数据结构长这样:
思想很简单,就是借助哈希表赋予了链表快速查找的特性嘛:可以快速查找某个 key 是否存在缓存(链表)中,同时可以快速删除、添加节点。回想刚才的例子,这种数据结构是不是完美解决了 LRU 缓存的需求?
也许读者会问,为什么要是双向链表,单链表行不行?另外,既然哈希表中已经存了 key,为什么链表中还要存键值对呢,只存值不就行了?
想的时候都是问题,只有做的时候才有答案。这样设计的原因,必须等我们亲自实现 LRU 算法之后才能理解,所以我们开始看代码吧~
四、代码实现
很多编程语言都有内置的哈希链表或者类似 LRU 功能的库函数,但是为了帮大家理解算法的细节,我们用 Java 自己造轮子实现一遍 LRU 算法。
首先,我们把双链表的节点类写出来,为了简化,key 和 val 都认为是 int 类型:
class Node {
public int key, val;
public Node next, prev;
public Node(int k, int v) {
this.key = k;
this.val = v;
}
}
然后依靠我们的 Node 类型构建一个双链表,实现几个要用到的 API,这些操作的时间复杂度均为 O(1) :
class DoubleList {
// 在链表头部添加节点 x
public void addFirst(Node x);
// 删除链表中的 x 节点(x 一定存在)
public void remove(Node x);
// 删除链表中最后一个节点,并返回该节点
public Node removeLast();
// 返回链表长度
public int size();
}
PS:这就是普通双向链表的实现,为了让读者集中精力理解 LRU 算法的逻辑,就省略链表的具体代码。
到这里就能回答刚才“为什么必须要用双向链表”的问题了,因为我们需要删除操作。删除一个链表节点不光要得到该节点本身的指针,也需要操作其前驱节点的指针,而双向链表才能支持直接查找前驱,保证操作的时间复杂度 O(1)。
有了双向链表的实现,我们只需要在 LRU 算法中把它和哈希表结合起来即可。我们先把逻辑理清楚:
如果能够看懂上述逻辑,翻译成代码就很容易理解了:
这里就能回答之前的问题“为什么要在链表中同时存储 key 和 val,而不是只存储 val”,注意这段代码:
if (cap == cache.size()) {
// 删除链表最后一个数据
Node last = cache.removeLast();
map.remove(last.key);
}
当缓存容量已满,我们不仅仅要删除最后一个 Node 节点,还要把 map 中映射到该节点的 key 同时删除,而这个 key 只能由 Node 得到。如果 Node 结构中只存储 val,那么我们就无法得知 key 是什么,就无法删除 map 中的键,造成错误。
至此,你应该已经掌握 LRU 算法的思想和实现了,很容易犯错的一点是:处理链表节点的同时不要忘了更新哈希表中对节点的映射。
如何实现LRU算法?的更多相关文章
- Android图片缓存之Lru算法
前言: 上篇我们总结了Bitmap的处理,同时对比了各种处理的效率以及对内存占用大小.我们得知一个应用如果使用大量图片就会导致OOM(out of memory),那该如何处理才能近可能的降低oom发 ...
- 缓存淘汰算法--LRU算法
1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也 ...
- 借助LinkedHashMap实现基于LRU算法缓存
一.LRU算法介绍 LRU(Least Recently Used)最近最少使用算法,是用在操作系统中的页面置换算法,因为内存空间是有限的,不可能把所有东西都放进来,所以就必须要有所取舍,我们应该把什 ...
- LinkedHashMap实现LRU算法
LinkedHashMap特别有意思,它不仅仅是在HashMap上增加Entry的双向链接,它更能借助此特性实现保证Iterator迭代按照插入顺序(以insert模式创建LinkedHashMap) ...
- LinkedHashMap 和 LRU算法实现
个人觉得LinkedHashMap 存在的意义就是为了实现 LRU 算法. public class LinkedHashMap<K,V> extends HashMap<K,V&g ...
- 简单LRU算法实现缓存
最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可,如下所示: java 代码 import java.ut ...
- memached 服务器lru算法
1.LRU是Least Recently Used的缩写,即最近最少使用页面置换算法,是为虚拟页式存储管理服务的.LRU算法的提出,是基于这样一个事实:在前面几条指令中使用频繁的页面很可能在后面的几条 ...
- 用LinkedHashMap实现LRU算法
(在学习操作系统时,要做一份有关LRU和clock算法的实验报告,很多同学都应该是通过数组去实现LRU,可能是对堆栈的使用和链表的使用不是很熟悉吧,在网上查资料时看到了LinkedHashMap,于是 ...
- 近期最久未使用页面淘汰算法———LRU算法(java实现)
请珍惜小编劳动成果,该文章为小编原创,转载请注明出处. LRU算法,即Last Recently Used ---选择最后一次訪问时间距离当前时间最长的一页并淘汰之--即淘汰最长时间没有使用的页 依照 ...
- Android 图像压缩,和LRU算法使用的推荐链接
近两日,看的关于这些方面的一些教程数十篇,最好的当属google原版的教程了.国内有不少文章是翻译这个链接的. 需要注意的一点是:Android的SDK中的LRU算法在V4包和Util包中各有一个,推 ...
随机推荐
- WPF DataGrid 触发器
<DataGrid.RowHeaderStyle> <Style TargetType="DataGridRowHeader"> <Style.Tri ...
- erp的核心代码,替代orm
public static SqlParameter[] get_array_list<T>(ArrayList rows) where T : class { Hashtable sql ...
- 1. linux系统简介
一.Linux是什么 linux位于系统调用和内核的那两层,直观上来看,我们使用的操作系统还包含一些在其上运行的应用程序,包含文本编译器,浏览器,电子邮件. 二.Linux与windows的区别 1. ...
- Linux编译安装Qt 5.4.1(-qt-xcb是必须要指定的,卸载自带的gcc等)
转载请注明文章:Linux编译安装Qt 5.4.1 出处:多客博图 很久不写文章了,过程很简单,但是操作很多,简单说吧. 前言: 操作系统CentOS 6.6,64位的. 1.安装gcc 4.8.4, ...
- 零元学Expression Blend 4 - Chapter 24 以实作了解Cover Flow功能
原文:零元学Expression Blend 4 - Chapter 24 以实作了解Cover Flow功能 今天要介绍一个Silverlight Toolkit内好用且在图片展示操作上很常见的元件 ...
- visual studio 2017 添加MSDN
原文:visual studio 2017 添加MSDN 1.启动VS2017的安装软件,点击更改,进行MSDN帮助组件添加安装. 2.在单个组件中找到"Help Viewer", ...
- Android零基础入门第71节:CardView简单实现卡片式布局
还记得我们一共学过了多少UI控件了吗?都掌握的怎么样啊. 安卓中一些常用控件学习得差不多了,今天再来学习一个新的控件CardView,在实际开发中也有非常高的地位. 一.CardView简介 Card ...
- C#try catch块
try..catch块的出现是为了异常处理. 格式为:try{...可能发生异常的代码...} catch{...对异常的处理...} finaly{...无论如何都会执行的代码..} 上面的只是一般 ...
- 年度调查 看看 2016 年 Go 语言调查结果
Go 语言官方博客公布了 2016 年 Go 语言使用调查. 在 3,595 名被调查者中,89% 称他们在工作中或工作之外用 Go 编程:63% 称他们的工作是 Web 开发,但只有 9% 的人只从 ...
- QT 线程池 + TCP 小试(三)实现最终功能
*免分资源链接点击打开链接http://download.csdn.net/detail/goldenhawking/4492378 有了TCP.线程池,我们就可以把他们连接起来.使用最简单的 QMa ...