庆余年电视剧终于在前两天上了,这两天赶紧爬取数据看一下它的表现。

庆余年

《庆余年》是作家猫腻的小说。这部从2007年就开更的作品拥有固定的书迷群体,也在文学IP价值榜上有名。

期待已久的影视版的《庆余年》终于播出了,一直很担心它会走一遍《盗墓笔记》的老路。在《庆余年》电视剧上线后,就第一时间去看了,真香。

庆余年微博传播分析

《庆余年》在微博上一直霸占热搜榜,去微博看一下大家都在讨论啥:

一条条看显然不符合数据分析师身份

于是爬取了微博超话页面,然后找到相关人员,分别去爬取相关人员的微博评论,看看大家都在讨论啥。


import argparse
parser = argparse.ArgumentParser(description="weibo comments spider")
parser.add_argument('-u', dest='username', help='weibo username', default='') #输入你的用户名
parser.add_argument('-p', dest='password', help='weibo password', default='') #输入你的微博密码
parser.add_argument('-m', dest='max_page', help='max number of comment pages to crawl(number<int> larger than 0 or all)', default=) #设定你需要爬取的评论页数
parser.add_argument('-l', dest='link', help='weibo comment link', default='') #输入你需要爬取的微博链接
parser.add_argument('-t', dest='url_type', help='weibo comment link type(pc or phone)', default='pc')
args = parser.parse_args()
wb = weibo()
username = args.username
password = args.password
try:
    max_page = int(float(args.max_page))
except:
    pass
url = args.link
url_type = args.url_type
if not username or not password or not max_page or not url or not url_type:
    raise ValueError('argument error')
wb.login(username, password)
wb.getComments(url, url_type, max_page)

如何利用Python生成词云图

爬取到微博评论后,老规矩,词云展示一下,不同主角的评论内容差别还是挺大的

张若昀:

李沁:

肖战:emmm....算了吧

从目前大家的评论来看,情绪比较正向,评价较高,相信《庆余年》会越来越火的。

这部剧在微博热度这么高,都是谁在传播呢?

于是我进一步点击用户头像获取转发用户的公开信息。

看了一下几位主演的相关微博,都是几十万的评论和转发,尤其是肖战有百万级的转发,尝试爬了一下肖战的微博,执行了6个小时的结果,大家随意感受一下执行过程:

最终还是败给了各位小飞侠,之后有结果再同步给大家。

于是我只能挑软柿子捏,换成官微的微博。

这条微博发布时间是26号,经过一段时间已经有比较好的传播,其中有几个关键节点进一步引爆话题。

经过几个关键节点后,进一步获得传播,这几个关键节点分别是:

肖战的超话:https://weibo.com/1081273845/Ii1ztr1BH

王小亚的微博:https://weibo.com/6475144268/Ii1rDEN6q

继续看一下转发该微博的用户分析:

整体看下来,庆余年官微的这条微博90%都是普通用户的转发,这部剧转发层级达到5层,传播范围广,在微博上的讨论女性居多(占比89%),大部分集中在一二线城市。

原著人物关系图谱

如果只看微博,不分析原著,那就不是一个合格的书粉。

于是我去下载了原著画一下人物关系图谱。

先给大家看一下原著的人物关系图谱:

emmm.....确实挺丑的,大家可以去Gephi上调整。

首先我需要从原著里洗出人物名,尝试用jieba分词库来清洗:


import jieba

test= 'temp.txt' #设置要分析的文本路径
text = open(test, 'r', 'utf-8')
seg_list = jieba.cut(text, cut_all=True, HMM=False)
print("Full Mode: " + "/ ".join(seg_list))  # 全模式

发现并不能很好的切分出所有人名,最简单的方法是直接准备好人物名称和他们的别名,这样就能准确定位到人物关系。

存储好人物表,以及他们对应的别名(建立成字典)


def synonymous_names(synonymous_dict_path):
    with codecs.open(synonymous_dict_path, 'r', 'utf-8') as f:
        lines = f.read().split('\n')
    for l in lines:
        synonymous_dict[l.split(' ')[0]] = l.split(' ')[1]
    return synonymous_dict

接下来直接清理文本数据:


def clean_text(text):
    new_text = []
    text_comment = []
    with open(text, encoding='gb18030') as f:
        para = f.read().split('\r\n')
        para = para[0].split('\u3000')
    for i in range(len(para)):
        if para[i] != '':
            new_text.append(para[i])
    for i in range(len(new_text)):
        new_text[i] = new_text[i].replace('\n', '')
        new_text[i] = new_text[i].replace(' ', '')
        text_comment.append(new_text[i])
    return text_comment

我们需要进一步统计人物出现次数,以及不同人物间的共现次数:


text_node = []
for name, times in person_counter.items():
    text_node.append([])
    text_node[-1].append(name)
    text_node[-1].append(name)
    text_node[-1].append(str(times))
node_data = DataFrame(text_node, columns=['Id', 'Label', 'Weight'])
node_data.to_csv('node.csv', encoding='gbk')

结果样例如下:

不愧是主角,范闲出现的次数超过了其他人物出现次数的总和,基本每个人都与主角直接或间接地产生影响。

同理可以得到不同人物的边,具体代码参考源文件。

接下来需要做的就是利用Gephi绘制人物关系图谱:

运行结果:

Python 分析到底是谁操纵《庆余年》上了热搜?的更多相关文章

  1. 五月天的线上演唱会你看了吗?用Python分析网友对这场线上演唱会的看法

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:CDA数据分析师 豆瓣9.4分!这场线上演唱会到底多好看? 首先让我 ...

  2. Python 分析后告诉你闲鱼上哪些商品抢手?

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:[Airpython] PS:如有需要Python学习资料的小伙伴可以 ...

  3. 2020不平凡的90天,Python分析三个月微博热搜数据带你回顾

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:刘早起早起 PS:如有需要Python学习资料的小伙伴可以加点击下方链 ...

  4. python:王思聪究竟上了多少次热搜?

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 朱小五 凹凸玩数据 PS:如有需要Python学习资料的小伙伴可以加 ...

  5. Python分析离散心率信号(上)

    Python分析离散心率信号(上) 一些理论和背景 心率包含许多有关信息.如果拥有心率传感器和一些数据,那么当然可以购买分析包或尝试一些可用的开源产品,但是并非所有产品都可以满足需求.也是这种情况.那 ...

  6. Python分析数据难吗?某科技大学教授说,很难但有方法就简单

    用python分析数据难吗?某科技大学的教授这样说,很难,但要讲方法,主要是因为并不是掌握了基础,就能用python来做数据分析的. 所谓python的基础,也就是刚入门的python学习者,学习的基 ...

  7. 学Python后到底能干什么?

    Python是一种什么语言? Python是一种计算机程序设计语言.你可能已经听说过很多种流行的编程语言,比如非常难学的C语言,非常流行的Java语言,适合初学者的Basic语言,适合网页编程的Jav ...

  8. Python实现对百度云的文件上传

    环境准备 python3.6 PyCharm 2017.1.3 Windows环境 框架搭建 selenium3.6 安装方法: pip install selenium 实现步骤: 一.步骤分析 1 ...

  9. 用 Python 分析上网记录,发现了很多不可思议的事

    摘要:分享个​ Python 神工具.​ 长时间使用浏览器会积累大量浏览器历史记录,这些是很隐私的数据,里面甚至可能有一些不可描述的网站或者搜索记录不想让别人知道. 不过,我们自己可能会感兴趣,天天上 ...

随机推荐

  1. 带你快速了解Java锁中的公平锁与非公平锁

    前言 Java语言中有许多原生线程安全的数据结构,比如ArrayBlockingQueue.CopyOnWriteArrayList.LinkedBlockingQueue,它们线程安全的实现方式并非 ...

  2. python爬虫--图片懒加载

    图片懒加载 是一种反爬机制,图片懒加载是一种网页优化技术.图片作为一种网络资源,在被请求时也与普通静态资源一样,将占用网络资源,而一次性将整个页面的所有图片加载完,将大大增加页面的首屏加载时间.为了解 ...

  3. GenericServlet和HttpServlet有什么区别?

    1.HttpServlet 1). 是一个 Servlet, 继承自 GenericServlet. 针对于 HTTP 协议所定制. 2). 在 service() 方法中直接把 ServletReu ...

  4. NodeJS1-1 NodeJS是什么?

    Node.js is a JavaScript  runtime built on Chrome's V8  Node.js uses an event-driven,non-blocking I/O ...

  5. 搞了一次IE浏览器兼容,我有点奔溃....

    浏览器兼容问题(主要时IE上遇到的坑坑坑) caniuse 工具(基本参考作用,实际还是需要测试) (1)安装babel-polyfill基本操作了,IE浏览器没有内置Promise对象,不仅如此,几 ...

  6. 安装react-native-cli工具(三)

    设置淘宝镜像 (这一步可以省略) npm config set registry https://registry.npm.taobao.org --global npm config set dis ...

  7. C#字符串与时间格式化

    需要将其它类型的变量,转换为字符串类型的一些常见方法与属性. 字符型转换为字符串 // C 货币 2.5.ToString("C"); // ¥2.50 // D 10进制数 .T ...

  8. JS---DOM---part4 课程介绍 & part3 复习

    part4 课程介绍 事件 1. 绑定事件的区别 2. 移除绑定事件的方式及区别和兼容代码 3. 事件的三个阶段 4. 事件冒泡 5. 为同一个元素绑定多个不同的事件,指向的是同一个事件处理函数 6. ...

  9. ORACLE spool打印

    问题描述:spool让我想起来了spooling假脱机,但是这个spool是oracle下的命令,将select查询出来的数据打印出来 1.linuxi下 spool +路径+文件名,这里的文件如果不 ...

  10. sqlserver日志处理不当而造成的隐患

    sqlserver日志处理不当而造成的隐患 事故背景:一大早还在路上,群里陆续有人反馈系统一直报错 “Unknown error 258”,后来查询日志发现错误日志 第一反应是不是数据库连接不够用了? ...