地址 https://www.acwing.com/problem/content/904/

给定两个字符串A和B,现在要将A经过若干操作变为B,可进行的操作有:

  1. 删除–将字符串A中的某个字符删除。
  2. 插入–在字符串A的某个位置插入某个字符。
  3. 替换–将字符串A中的某个字符替换为另一个字符。

现在请你求出,将A变为B至少需要进行多少次操作。

输入格式

第一行包含整数n,表示字符串A的长度。

第二行包含一个长度为n的字符串A。

第三行包含整数m,表示字符串B的长度。

第四行包含一个长度为m的字符串B。

字符串中均只包含大写字母。

输出格式

输出一个整数,表示最少操作次数。

数据范围

1≤n,m≤1000

输入样例:

AGTCTGACGC

AGTAAGTAGGC
输出样例:

解法

动态规划

f[i][j] 表示 a[1-i]变化到b[1-j]最小的变化次数

那么首先最容易得到的变化次数就是

a长度=i  b长度=0

a长度=0 b长度=0

f[0][j] 若b为j长度 a为0 则a需要增加j次才能变成b
f[i][0] 若a为i长度 b为0 则a需要删除i次才能编程b

接下来进行分析各种情况

a=i b=j

1 若 a需要删除最后的字母才能变成b 那么就有了 a[1~i-1] == b[1-j] 的前提

2 若 a需要最后增加一个字母才能变成b 那么就有了 a[1-i] == b[1-j+1] 的前提

3 若 a需要改动最后一个字母才能变成b 那么就有了 a[1-i-1] == b[1-j-1] 的前提

第3种情况中 若 a[i] == b[j] 则 此时的最小操作数就可能等于 dp[i-1][j-1]的操作数

代码流程就是

 f[i][j] = min(f[i-][j]+,f[i][j-]+);
if(a[i] == b[j]) f[i][j] = min(f[i][j],f[i-][j-]);
else f[i][j] = min(f[i][j],f[i-][j-]+);

全部代码如下

#include <iostream>

using namespace std;

const int N = ;
int n,m;
char a[N],b[N];
int f[N][N]; //f[i][j] 表示 a[1-i]变化到b[1-j]最小的变化次数 int main()
{
scanf("%d%s",&n,a+);
scanf("%d%s",&m,b+); //首先初始化 f[i][0] f[j][0]
//f[0][j] 若b为j长度 a为0 则a需要增加j次才能变成b
//f[i][0] 若a为i长度 b为0 则a需要删除i次才能编程b
for(int i =;i <= n;i++) f[i][] = i;
for(int i = ; i <= m;i++) f[][i] = i; for(int i =;i <= n;i++){
for(int j = ;j <=m;j++){
f[i][j] = min(f[i-][j]+,f[i][j-]+);
if(a[i] == b[j]) f[i][j] = min(f[i][j],f[i-][j-]);
else f[i][j] = min(f[i][j],f[i-][j-]+);
}
} cout << f[n][m] << endl; return ;
}

acwing 902. 最短编辑距离的更多相关文章

  1. POJ_3356——最短编辑距离,动态规划

    Description Let x and y be two strings over some finite alphabet A. We would like to transform x int ...

  2. AcWing 91. 最短Hamilton路径

    今天第一次在\(AcWing\)这个网站上做题,来发一下此网站的第一篇题解 传送门 思路 直接枚举的话时间复杂度为\(O(n*n!)\) 复杂度显然爆炸,所以我们用二进制枚举,这样就可以把复杂度降到\ ...

  3. (5千字)由浅入深讲解动态规划(JS版)-钢条切割,最大公共子序列,最短编辑距离

    斐波拉契数列 首先我们来看看斐波拉契数列,这是一个大家都很熟悉的数列: // f = [1, 1, 2, 3, 5, 8] f(1) = 1; f(2) = 1; f(n) = f(n-1) + f( ...

  4. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  5. AcWing 1140. 最短网络

    农夫约翰被选为他们镇的镇长! 他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场. 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场. 约翰的农场的编号是1,其他农场 ...

  6. POJ 3356(最短编辑距离问题)

    POJ - 3356 AGTC Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Desc ...

  7. 题解【AcWing902】最短编辑距离

    题面 经典的最长公共子序列模型. 我们设 \(dp_{i,j}\) 表示 \(a_{1...i}\) 与 \(b_{1...j}\) 匹配上所需的最少操作数. 考虑删除操作,我们将 \(a_i\) 删 ...

  8. stanford NLP学习笔记3:最小编辑距离(Minimum Edit Distance)

    I. 最小编辑距离的定义 最小编辑距离旨在定义两个字符串之间的相似度(word similarity).定义相似度可以用于拼写纠错,计算生物学上的序列比对,机器翻译,信息提取,语音识别等. 编辑距离就 ...

  9. 编辑距离算法详解:Levenshtein Distance算法

    算法基本原理:假设我们可以使用d[ i , j ]个步骤(可以使用一个二维数组保存这个值),表示将串s[ 1…i ] 转换为 串t [ 1…j ]所需要的最少步骤个数,那么,在最基本的情况下,即在i等 ...

随机推荐

  1. 精通awk系列(6):awk命令结构和awk语法结构

    回到: Linux系列文章 Shell系列文章 Awk系列文章 awk命令行结构和语法结构 awk命令行结构 awk [ -- ] program-text file ... (1) awk -f p ...

  2. js-08-数组学习

    一.数组语法格式 var name=[item1,item2,......] 二.数组的声明创建 var arr=new Aarray( ) //声明一个空数组对象 var arr=new Array ...

  3. java读取文本文件内容2

    版权声明:本文为xing_star原创文章,转载请注明出处! 本文同步自http://javaexception.com/archives/183 很久之前写了一篇Java读取文本文件内容,链接地址是 ...

  4. MySQL删除大表时潜在的问题(drop table,truncate table)

    来源于:https://www.cnblogs.com/CtripDBA/p/11465315.html,侵删,纯截图,避免吸引流量之嫌 case1,删除大表时,因为清理自适应hash索引占用的内容导 ...

  5. mysql从5.6升级到5.7后出现 Expression #1 of ORDER BY clause is not in SELECT list,this is incompatible with DISTINCT

    [问题]mysql从5.6升级到5.7后出现:插入数据和修改数据时出错Caused by: com.ibatis.common.jdbc.exception.NestedSQLException: - ...

  6. 并发编程~~~协程~~~greenlet模块, gevent模块

    一 协程 1. 协程: 单线程下的并发,又称微线程,纤程.协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的. 并发真正的核心: 切换并且保持状态. 开启协程并发的执行,自己的程序把控着C ...

  7. linux 磁盘分区和挂载看这一篇就够了

    Linux fdisk 和 mount 命令操作指南,linux磁盘管理.新增磁盘.挂载新硬盘(linux运维入门) 首先列出文件系统的整体磁盘空间使用情况.可以用来查看磁盘已被使用多少空间和还剩余多 ...

  8. jenkins实现git自动拉取代码时替换配置文件

    jenkins实现从git上自动拉取源代码——>自动编译——>发布到测试服务器——>验证测试,这个大家应该都知道,但是关于源代码里的配置文件,可能就会有点头疼了, 一般测试都会自己的 ...

  9. Goland安装

    Goland安装 http://c.biancheng.net/view/6124.html

  10. java之子类对象实例化过程

    假设现在有这么一个父类: public class Person{ public Person(){} public String name = "tom"; public int ...