Noip2016Day2T3 愤怒的小鸟
problem
平面内有n个点,每次可以确定一条过原点且开口向上的抛物线,将这条抛物线上所有的点都删去。问最少需要删几次可以删掉全部的点。
solution
n比较小,直接状压一下。因为已经确定了要过原点。所以每两个点都可以确定一条抛物线。预处理出所有抛物线以及每条抛物线可以删掉的点。
然后记忆化搜索,枚举每次选择的抛物线。转移即可。
注意精度!
确定抛物线的方法就用解二元一次方程组的方法即可。具体如下:
设抛物线的二次项系数为\(a\),一次项系数为\(b\) ,两个点的坐标分别为\((x_i,y_i),(x_j,y_j)\)。
记\(k_1=x_i^2,k_2=x_i,k_3=y_i,k_4=x_j^2,k_5=x_j,k_6=y_j\)
然后就是解方程组
\begin{aligned}
k_1a+k_2b=k_3& &(1)\\
k_4a+k_5b=k_6& &(2)
\end{aligned}
\right.
\]
由\((1)\)得\(b=\frac{k_3-k_1a}{k_2}\),代回\((2)\)得\(a=\frac{k_2k_6-k_3k_5}{k_2k_4-k_1k_5}\)
code
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
typedef long long ll;
const double eps = 1e-9;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
int tot;
bool calc(double a,double b,double x,double y) {
return fabs(a * x * x + b * x - y) <= eps;
}
double x[20],y[20],a[400],b[400];
int sol[400];
int n,m,f[1 << 20];
int dfs(int now) {
if(!now) return f[now] = 0;
if(f[now] != -1) return f[now];
int ret = 100000;
for(int i = 1;i <= tot;++i) {
int t = now & sol[i];
if(t != now) ret = min(ret,dfs(t) + 1);
}
return f[now] = ret;
}
int main() {
int T = read();
while(T--) {
tot = 0;
memset(f,-1,sizeof(f));
n = read(),m = read();
for(int i = 1;i <= n;++i) scanf("%lf%lf",&x[i],&y[i]);
for(int i = 1;i <= n;++i) {
for(int j = i + 1;j <= n;++j) {
if(fabs(x[i] - x[j]) <= eps) continue;
++tot;
double k1 = x[i] * x[i],k2 = x[i],k3 = y[i],k4 = x[j] * x[j],k5 = x[j],k6 = y[j];
a[tot] = ((k6 * k2 - k3 * k5)) / ((k4 * k2 - k1 * k5));
b[tot] = (k3 - k1 * a[tot]) / k2;
if(a[tot] >= 0) --tot;
}
}
for(int i = 1;i <= tot;++i) {
sol[i] = (1 << n) - 1;
for(int j = 1;j <= n;++j)
if(calc(a[i],b[i],x[j],y[j])) sol[i] ^= (1 << (j - 1));
}
for(int i = 1;i <= n;++i) {
++tot;
sol[tot] = ((1 << n) - 1) ^ (1 << (i - 1));
}
printf("%d\n",dfs((1 << n) - 1));
}
return 0;
}
Noip2016Day2T3 愤怒的小鸟的更多相关文章
- NOIP2016Day2T3愤怒的小鸟(状压dp) O(2^n*n^2)再优化
看这范围都知道是状压吧... 题目大意就不说了嘿嘿嘿 网上流传的写法复杂度大都是O(2^n*n^2),这个复杂度虽然官方数据可以过,但是在洛谷上会TLE[百度搜出来前几个博客的代码交上去都TLE了], ...
- [NOIP2016]愤怒的小鸟 D2 T3 状压DP
[NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...
- 基于html5实现的愤怒的小鸟网页游戏
之前给大家分享一款基于html5 canvas和js实现的水果忍者网页版,今天给大家分享一款基于html5实现的愤怒的小鸟网页游戏.这款游戏适用浏览器:360.FireFox.Chrome.Safar ...
- [luogu2831][noip d2t3]愤怒的小鸟_状压dp
愤怒的小鸟 noip-d2t3 luogu-2831 题目大意:给你n个点,问最少需要多少条经过原点的抛物线将其覆盖. 注释:1<=点数<=18,1<=数据组数<=30.且规定 ...
- 洛谷P2831 愤怒的小鸟 + 篮球比赛1 2
这三道题一起做,有一点心得吧. 愤怒的小鸟,一眼看上去是爆搜,但是实现起来有困难(我打了0分出来). 还有一种解法是状压DP. 抛物线一共只有那么多条,我们枚举抛物线(枚举两个点),这样就能够预处理出 ...
- Unity3D笔记 愤怒的小鸟<二> 实现Play界面
创建Play界面.能个把各个图片组合成一个场景,场景组成后背景能够不停的滚动,当鼠标单击时显示图片手型鼠标 一.GUI Texture 1.创建背景.地面.树木.草 ,这里注意Z轴的排序,一层一层则第 ...
- Unity3D笔记 愤怒的小鸟<一>场景切换
新建3个场景,场景1 Start 十秒后自动切换到场景2 Splash,场景2在二秒后自动切换到场景3 Selection 一.场景一Start 二.场景2 Splash 三.场景3 Selectio ...
- Unity3D游戏-愤怒的小鸟游戏源码和教程(二)
Unity愤怒的小鸟游戏教程(二) 本文提供全流程,中文翻译.Chinar坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) AngryEva游戏效果 ...
- Unity3D游戏-愤怒的小鸟游戏源码和教程(一)
Unity愤怒的小鸟游戏教程 本文提供全流程,中文翻译.Chinar坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) AngryEva游戏效果: 1 ...
随机推荐
- angular cli 使用echarts
1.安装库 npm install typings echarts --global npm install ngx-echarts --save npm install @types/echarts ...
- 46.QT-自带库QSerialPort串口使用
之前一章学习的是第三方库使用: 34.QT-qextserialport第三方库制作串口助手(并动态检测在线串口,附带源码) 本章来学习自带serial库 1.QSerialPortInfo QLis ...
- 《精通Python爬虫框架Scrapy》学习资料
<精通Python爬虫框架Scrapy>学习资料 百度网盘:https://pan.baidu.com/s/1ACOYulLLpp9J7Q7src2rVA
- Oracle - SPM固定执行计划
1. 通过dbms_xplan.display_cursor查看指定sql都有哪些执行计划 SQL> select * from table(dbms_xplan.display_cursor( ...
- python将字符串插入表中避免单双引号问题
调用pymysql.escape_string('向数据库插入的数据') 例如: import pymysql str = 'as"sdf' print(pymysql.escape_str ...
- MySQL数据库:运算符
运算符 比较运算符: > 大于 < 小于 >= 大于等于 <= 小于等于 = 等于 != 不等于 范围运算符: between...and...(包含边界值) 类似于 > ...
- 2019/12/12学习内容摘要(Linux系统用户与用户组管理②)
5.命令 chfn 用于修改用户的finger (finger为 /etc/passwd 文件第五个字段中显示的信息) 三,用户密码管理 1.命令passwd 格式 passwd [username ...
- 安装完dlib以及face_recognition,但是在python IDE中无法导入的问题
在dlib以及face_recognition通过pip安装成功之后(如何通过pip进行安装,在博主的上一篇随笔中有提及),在pycharm中无法导入. 在综合完网上的各种说法之后,发现了原因,在下边 ...
- Redux Class(immutable Record)引入的必要性 && Navigation引入方式
我的意见 和大家讨论一下几个问题 1. 项目里面没有用class规定的请求数据结构,调试数据的时候无法从前端获取请求的数据格式,要看后端接口,增加了调试的难度.我们以前会用immutable Reco ...
- 【ES6学习笔记之】Object.assign()
基本用法 Object.assign方法用于对象的合并,将源对象(source)的所有可枚举属性,复制到目标对象(target). const target = { a: 1 }; const sou ...