线性回归 python 代码实现
本代码参考自:https://github.com/lawlite19/MachineLearning_Python#%E4%B8%80%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92
首先,线性回归公式:y = X*W +b 其中X是m行n列的数据集,m代表样本的个数,n代表每个样本的数据维度。则W是n行1列的数据,b是m行1列的数据,y也是。
损失函数采用MSE,采用梯度下降法进行训练
1 .加载数据集并进行读取
def load_csvdata(filename,split,dataType): #加载数据集
return np.loadtxt(filename,delimiter = split,dtype = dataType) def read_data(): #读取数据集
data = load_csvdata("data.txt",split=",",dataType=np.float64)
print(data.shape)
X = data[:,0:-1] #取data的前两列
y = data[:,-1] #取data的最后一列作为标签
return X,y
2 . 对数据进行标准化
def feature_normalization(X):
X_norm = np.array(X)
mu = np.zeros((1,X.shape[1]))
std = np.zeros((1,X.shape[1]))
mu = np.mean(X_norm,0)
std = np.std(X_norm,0)
for i in range(X.shape[1]):
X_norm[:,i] = (X_norm[:,i] - mu[i]) / std[i]
return X_norm,mu,std
3. 损失值的计算
def loss(X,y,w):
m = len(y)
J = 0
J = (np.transpose(X*w - y))*(X*w - y) / (2*m)
print(J)
return J
4. 梯度下降算法的python实现
def gradientDescent(X,y,w,lr,num_iters):
m = len(y) #获取数据集长度
n = len(w) #获取每个输入数据的维度
temp = np.matrix(np.zeros((n,num_iters)))
J_history = np.zeros((num_iters,1))
for i in range(num_iters): #进行迭代
h = np.dot(X,w) #线性回归的矢量表达式
temp[:,i] = w - ((lr/m)*(np.dot(np.transpose(X),h-y))) #梯度的计算
w = temp[:,i]
J_history[i] = loss(X,y,w)
return w,J_history
5. 绘制损失值随迭代次数变化的曲线图
def plotLoss(J_history,num_iters):
x = np.arange(1,num_iters+1)
plt.plot(x,J_history)
plt.xlabel("num_iters")
plt.ylabel("loss")
plt.title("Loss value changes with the number of iterations")
plt.show()
6. 主函数
if __name__ == "__main__":
X,y = read_data()
X,mu,sigma = feature_normalization(X)
m = len(y) #样本的总个数
X = np.hstack((np.ones((m,1)),X)) #在x上加上1列是为了计算偏移b X=[x0,x1,x2,......xm] 其中x0=1 y = x*w
y = y.reshape((-1,1))
lr = 0.01
num_iters = 400
w = np.random.normal(scale=0.01, size=((X.shape[1],1)))
theta,J_history = gradientDescent(X,y,w,lr,num_iters)
plotLoss(J_history,num_iters)
7.结果

线性回归 python 代码实现的更多相关文章
- 线性回归——Python代码实现
import numpy as np def computer_error_for_give_point(w, b, points): # 计算出 观测值与计算值 之间的误差, 并累加,最后返回 平均 ...
- 梯度下降法的python代码实现(多元线性回归)
梯度下降法的python代码实现(多元线性回归最小化损失函数) 1.梯度下降法主要用来最小化损失函数,是一种比较常用的最优化方法,其具体包含了以下两种不同的方式:批量梯度下降法(沿着梯度变化最快的方向 ...
- 【机器学习】线性回归python实现
线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用python实现线性回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 写了三个例子,分别是单变量的 ...
- 机器学习/逻辑回归(logistic regression)/--附python代码
个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(log ...
- 一元回归1_基础(python代码实现)
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...
- 李宏毅机器学习课程笔记-2.5线性回归Python实战
本文为作者学习李宏毅机器学习课程时参照样例完成homework1的记录. 任务描述(Task Description) 现在有某地空气质量的观测数据,请使用线性回归拟合数据,预测PM2.5. 数据集描 ...
- 可爱的豆子——使用Beans思想让Python代码更易维护
title: 可爱的豆子--使用Beans思想让Python代码更易维护 toc: false comments: true date: 2016-06-19 21:43:33 tags: [Pyth ...
- if __name__== "__main__" 的意思(作用)python代码复用
if __name__== "__main__" 的意思(作用)python代码复用 转自:大步's Blog http://www.dabu.info/if-__-name__ ...
- Python 代码风格
1 原则 在开始讨论Python社区所采用的具体标准或是由其他人推荐的建议之前,考虑一些总体原则非常重要. 请记住可读性标准的目标是提升可读性.这些规则存在的目的就是为了帮助人读写代码,而不是相反. ...
随机推荐
- SpringCloud之Turbine
[前面的话]书接上文,本文的某些知识依赖我的上一篇SpringCLoud的文章:SpringCloud之Feign,如果没有看过可以先移步去看一下.前文提到了hystrix的应用,以及hystrix的 ...
- Python连载40-协程定义及状态、send语句、yield用法
一.协程 1.历史进程: (1)3.4引入协程,用yield来实现 (2)3.5引入协程语法 (3)实现协程比较好的包有asyncio,tornado,gevent 2.定义:协程是为非抢占式多任务产 ...
- 大文件分割、命令脚本 - Python
日志文件分割.命名 工作中经常会收到测试同学.客户同学提供的日志文件,其中不乏几百M一G的也都有,毕竟压测一晚上产生的日志量还是很可观的,xDxD,因此不可避免的需要对日志进行分割,通常定位问题需要针 ...
- WPF中资源的引用方法
一.引用同一个程序中的资源 1.使用相对Uri来引用资源,如下所示 img.Source=new BitmapImage(new Uri(@"d"\iamges\Backgroun ...
- uni-app实现滑动切换效果
在对于uni-app框架了解之后,今天就实现一个滚动切换tab效果,这个很常见的一个效果,最后封装成一个组件,便于以后使用,写这个需要引入uni官方提供的uni.css样式,用到了写好的样式,就不需要 ...
- redis分布式锁-基本概念与实现方式对比
1.redis中使用WATCH实现锁机制,是最次之的方式.WATCH只会在数据被其他客户端抢先修改了的情况下,“通知”执行了这个命令的客户端,而不会阻止其他客户端对数据进行修改.此类锁成为“乐观锁” ...
- j2ee开发之hibernate框架学习笔记
hibernate框架技术重点学习笔记 1.针对不同的数据库,有不同的数据库实现类,使其符号对应的数据库? mysqlDaoImpl oracleDaoImpl ... ... 2.对象和表记录的转换 ...
- 使用.NET Core中创建Windows服务(一) - 使用官方推荐方式
原文:Creating Windows Services In .NET Core – Part 1 – The "Microsoft" Way 作者:Dotnet Core Tu ...
- 编写shell脚本实现一键创建KVM虚拟机
shell脚本一键创建虚拟机 代码如下: #!/bin/bashname=$1 #把位置变量$1重新定义为name(创建虚拟机的名字)path1=/var/lib/libvirt/images/ #i ...
- .net core 3.0 Signalr - 02 使用强类型的Hub
## 强类型的优缺点 - 优点 强类型的Hub可以避免魔法函数名,相比弱类型更容易维护和发现问题,直接上代码 - 缺点 特么的得多些好几行代码 ## 代码 ### 接口定义 ``` C# /// // ...