Milking Order @USACO 2018 US Open Contest, Gold/upc_exam_6348

PROBLEM

题目描述

Farmer John's N cows (1≤N≤105), numbered 1…N as always, happen to have too much time on their hooves. As a result, they have worked out a complex social hierarchy related to the order in which Farmer John milks them every morning.

After weeks of study, Farmer John has made M observations about his cows' social structure (1≤M≤50,000). Each observation is an ordered list of some of his cows, indicating that these cows should be milked in the same order in which they appear in this list. For example, if one of Farmer John's observations is the list 2, 5, 1, Farmer John should milk cow 2 sometime before he milks cow 5, who should be milked sometime before he milks cow 1.

Farmer John's observations are prioritized, so his goal is to maximize the value of X for which his milking order meets the conditions outlined in the first X observations. If multiple milking orders satisfy these first X conditions, Farmer John believes that it is a longstanding tradition that cows with lower numbers outrank those with higher numbers, so he would like to milk the lowest-numbered cows first. More formally, if multiple milking orders satisfy these conditions, Farmer John would like to use the lexicographically smallest one. An ordering x is lexicographically smaller than an ordering y if for some j, xi=yi for all i<j and xj<yj (in other words, the two orderings are identical up to a certain point, at which x is smaller than yy).

Please help Farmer John determine the best order in which to milk his cows.

输入

The first line contains N and M. The next M lines each describe an observation. Line i+1 describes observation i, and starts with the number of cows mi listed in the observation followed by the list of mimi integers giving the ordering of cows in the observation. The sum of the mi's is at most 200,000.

输出

Output N space-separated integers, giving a permutation of 1…N containing the order in which Farmer John should milk his cows.

样例输入

4 3

3 1 2 3

2 4 2

3 3 4 1

样例输出

1 4 2 3

提示

Here, Farmer John has four cows and should milk cow 1 before cow 2 and cow 2 before cow 3 (the first observation), cow 4 before cow 2 (the second observation), and cow 3 before cow 4 and cow 4 before cow 1 (the third observation). The first two observations can be satisfied simultaneously, but Farmer John cannot meet all of these criteria at once, as to do so would require that cow 1 come before cow 3 and cow 3 before cow 1.

This means there are two possible orderings: 1 4 2 3 and 4 1 2 3, the first being lexicographically smaller.

MEANING

给你n个点,m条链(边集),要求选前k条链,使得所有点和选择的边构成一个DAG,k要尽可能大,输出点的最小拓扑序。

SOLUTION

如果前k条链不能构成DAG,,那么k+1条链也不能构成DAG,因此k的取值在 \(k_{max}\)的左侧合法,右侧不合法 ,所以可以二分求k的最大值,对构成的图拓扑排序,即可判断图是否为DAG。

CODE

#define IN_PC() freopen("C:\\Users\\hz\\Desktop\\in.txt","r",stdin)
#define IN_LB() freopen("C:\\Users\\acm2018\\Desktop\\in.txt","r",stdin)
#define OUT_PC() freopen("C:\\Users\\hz\\Desktop\\out.txt","w",stdout)
#define OUT_LB() freopen("C:\\Users\\acm2018\\Desktop\\out.txt","w",stdout)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 100005; int n, m; priority_queue<int,vector<int>,greater<int> > pq;
vector<int> ans; struct edge {
int v, w,nex;
} ed[MAXN * 4]; int in[MAXN],head[MAXN], cnt; void addedge(int u, int v,int w) {
cnt++;
ed[cnt].v = v;
ed[cnt].w = w;
ed[cnt].nex = head[u];
head[u] = cnt;
} bool judge(int num) {
for(int i=1;i<=n;i++)in[i] = 0;
for(int i=1;i<=n;i++){
for(int j = head[i];j;j=ed[j].nex){
if(ed[j].w<=num){
in[ed[j].v]++;
}
}
}
for(int i=1;i<=n;i++){
if(!in[i])pq.push(i);
}
ans.clear();
while(!pq.empty()){
int u = pq.top();
ans.push_back(u);
pq.pop();
for(int i=head[u];i;i=ed[i].nex){
int v = ed[i].v;
if(ed[i].w>num)continue;
in[v]--;
if(!in[v]){
pq.push(v);
}
}
}
return ans.size() == (unsigned)n;
} int main() {
// IN_PC();
scanf("%d%d", &n, &m);
for(int i = 0; i < m; i++) {
int k,p,pre;
scanf("%d", &k);
for(int j = 0; j < k; j++) {
scanf("%d", &p);
if(j)addedge(pre,p,i);
pre = p;
}
}
int l = 0, r = m - 1;
while(l < r) {
int mid = (l + r +1) / 2;
if(judge(mid))
l = mid;
else r = mid - 1;
}
judge(l);
for(unsigned int i=0;i<ans.size();i++)printf("%s%d",i==0?"":" ",ans[i]);
printf("\n");
return 0;
}

【二分+拓扑排序】Milking Order @USACO 2018 US Open Contest, Gold/upc_exam_6348的更多相关文章

  1. codeforces 645 D. Robot Rapping Results Report 二分+拓扑排序

    题目链接 我们可以发现, 这是一个很明显的二分+拓扑排序.... 如何判断根据当前的点, 是否能构造出来一个唯一的拓扑序列呢. 如果有的点没有出现, 那么一定不满足. 如果在加进队列的时候, 同时加了 ...

  2. CF #CROC 2016 - Elimination Round D. Robot Rapping Results Report 二分+拓扑排序

    题目链接:http://codeforces.com/contest/655/problem/D 大意是给若干对偏序,问最少需要前多少对关系,可以确定所有的大小关系. 解法是二分答案,利用拓扑排序看是 ...

  3. CodeForces - 1100E 二分+拓扑排序

    题意: 一个n个节点的有向图,节点标号从1到n,存在m条单向边.每条单向边有一个权值,代表翻转其方向所需的代价.求使图变成无环图,其中翻转的最大边权值最小的方案,以及该方案翻转的最大的边权. Inpu ...

  4. CROC 2016 - Elimination Round (Rated Unofficial Edition) D. Robot Rapping Results Report 二分+拓扑排序

    D. Robot Rapping Results Report 题目连接: http://www.codeforces.com/contest/655/problem/D Description Wh ...

  5. Codeforces Round #532 (Div. 2) E. Andrew and Taxi(二分+拓扑排序)

    题目链接:https://codeforces.com/contest/1100/problem/E 题意:给出 n 个点 m 条边的有向图,要翻转一些边,使得有向图中不存在环,问翻转的边中最大权值最 ...

  6. USACO 2016 US Open Contest, Gold解题报告

    1.Splitting the Field http://usaco.org/index.php?page=viewproblem2&cpid=645 给二维坐标系中的n个点,求ans=用一个 ...

  7. 拓扑排序(三)之 Java详解

    前面分别介绍了拓扑排序的C和C++实现,本文通过Java实现拓扑排序. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑排序的代码说明 4. 拓扑排序的完整源码和测试程序 转载请注明出处 ...

  8. 拓扑排序(二)之 C++详解

    本章是通过C++实现拓扑排序. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑排序的代码说明 4. 拓扑排序的完整源码和测试程序 转载请注明出处:http://www.cnblogs. ...

  9. 拓扑排序(一)之 C语言详解

    本章介绍图的拓扑排序.和以往一样,本文会先对拓扑排序的理论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑 ...

随机推荐

  1. Unicode字符编码表

    十进制 十六进制  字符数 编码分类(中文) 编码分类(英文) 起始 终止 起始 终止 (个)     0 127 0000 007F 128 C0控制符及基本拉丁文 C0 Control and B ...

  2. [SDOI2018]原题识别

    题解: ..感觉挺烦得 而且我都没有注意到树随机这件事情.. 就写个30分的莫队.. #include <bits/stdc++.h> using namespace std; #defi ...

  3. RequireJS跨域加载html模版后被转成JS问题分析及解决

    问题描述 RequireJS跨域加载HTML模版失败,例如: 在a.com域名下请求CDN域名下的模版,text.js插件会把html文件转成html.js文件去加载,由于并没有生成html.js文件 ...

  4. React 入门实例教程(转载)

    现在最热门的前端框架,毫无疑问是 React . 上周,基于 React 的 React Native 发布,结果一天之内,就获得了 5000 颗星,受瞩目程度可见一斑. React 起源于 Face ...

  5. js,JQuery实现,带筛选,搜索的select

    代码 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title& ...

  6. 关闭PHP的opcache缓存

    1.使用phpinfo();查看配置信息 2.搜索Additional .ini files parsed 3.查看opcache安装目录 4.打开文件将   opcache.enable=1 改成  ...

  7. ArrayList类中的contains()方法底层依赖的是equals()方法

    ArrayList类中的contains()方法底层依赖的是equals()方法.若集合中的元素是自定义对象,则应该重写该类父类Object的equals()方法,否则对象永远都不相同(因为都是new ...

  8. nexus、maven私服仓库(一)

    下载地址:http://www.sonatype.com/download-oss-sonatype 将下载好的nexus解压到指定的目录下,我这里使用的是nexus-3.14.0-04-win64  ...

  9. 初识Linux系统

    1. pwd 显示现在所在位置 2. ls 显示目录下的文件 ls -a:显示隐藏文件(带 . 的就是隐藏文件): ls -a -l :每个文件夹的详细信息: ls > bbb (把查到的所有文 ...

  10. 浏览器 User-Agent 大全

    一.基础知识 Http Header之User-Agent User Agent中文名为用户代理,是Http协议中的一部分,属于头域的组成部分,User Agent也简称UA.它是一个特殊字符串头,是 ...