【二分+拓扑排序】Milking Order @USACO 2018 US Open Contest, Gold/upc_exam_6348
Milking Order @USACO 2018 US Open Contest, Gold/upc_exam_6348
PROBLEM
题目描述
Farmer John's N cows (1≤N≤105), numbered 1…N as always, happen to have too much time on their hooves. As a result, they have worked out a complex social hierarchy related to the order in which Farmer John milks them every morning.
After weeks of study, Farmer John has made M observations about his cows' social structure (1≤M≤50,000). Each observation is an ordered list of some of his cows, indicating that these cows should be milked in the same order in which they appear in this list. For example, if one of Farmer John's observations is the list 2, 5, 1, Farmer John should milk cow 2 sometime before he milks cow 5, who should be milked sometime before he milks cow 1.
Farmer John's observations are prioritized, so his goal is to maximize the value of X for which his milking order meets the conditions outlined in the first X observations. If multiple milking orders satisfy these first X conditions, Farmer John believes that it is a longstanding tradition that cows with lower numbers outrank those with higher numbers, so he would like to milk the lowest-numbered cows first. More formally, if multiple milking orders satisfy these conditions, Farmer John would like to use the lexicographically smallest one. An ordering x is lexicographically smaller than an ordering y if for some j, xi=yi for all i<j and xj<yj (in other words, the two orderings are identical up to a certain point, at which x is smaller than yy).
Please help Farmer John determine the best order in which to milk his cows.
输入
The first line contains N and M. The next M lines each describe an observation. Line i+1 describes observation i, and starts with the number of cows mi listed in the observation followed by the list of mimi integers giving the ordering of cows in the observation. The sum of the mi's is at most 200,000.
输出
Output N space-separated integers, giving a permutation of 1…N containing the order in which Farmer John should milk his cows.
样例输入
4 3
3 1 2 3
2 4 2
3 3 4 1
样例输出
1 4 2 3
提示
Here, Farmer John has four cows and should milk cow 1 before cow 2 and cow 2 before cow 3 (the first observation), cow 4 before cow 2 (the second observation), and cow 3 before cow 4 and cow 4 before cow 1 (the third observation). The first two observations can be satisfied simultaneously, but Farmer John cannot meet all of these criteria at once, as to do so would require that cow 1 come before cow 3 and cow 3 before cow 1.
This means there are two possible orderings: 1 4 2 3 and 4 1 2 3, the first being lexicographically smaller.
MEANING
给你n个点,m条链(边集),要求选前k条链,使得所有点和选择的边构成一个DAG,k要尽可能大,输出点的最小拓扑序。
SOLUTION
如果前k条链不能构成DAG,,那么k+1条链也不能构成DAG,因此k的取值在 \(k_{max}\)的左侧合法,右侧不合法 ,所以可以二分求k的最大值,对构成的图拓扑排序,即可判断图是否为DAG。
CODE
#define IN_PC() freopen("C:\\Users\\hz\\Desktop\\in.txt","r",stdin)
#define IN_LB() freopen("C:\\Users\\acm2018\\Desktop\\in.txt","r",stdin)
#define OUT_PC() freopen("C:\\Users\\hz\\Desktop\\out.txt","w",stdout)
#define OUT_LB() freopen("C:\\Users\\acm2018\\Desktop\\out.txt","w",stdout)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 100005;
int n, m;
priority_queue<int,vector<int>,greater<int> > pq;
vector<int> ans;
struct edge {
int v, w,nex;
} ed[MAXN * 4];
int in[MAXN],head[MAXN], cnt;
void addedge(int u, int v,int w) {
cnt++;
ed[cnt].v = v;
ed[cnt].w = w;
ed[cnt].nex = head[u];
head[u] = cnt;
}
bool judge(int num) {
for(int i=1;i<=n;i++)in[i] = 0;
for(int i=1;i<=n;i++){
for(int j = head[i];j;j=ed[j].nex){
if(ed[j].w<=num){
in[ed[j].v]++;
}
}
}
for(int i=1;i<=n;i++){
if(!in[i])pq.push(i);
}
ans.clear();
while(!pq.empty()){
int u = pq.top();
ans.push_back(u);
pq.pop();
for(int i=head[u];i;i=ed[i].nex){
int v = ed[i].v;
if(ed[i].w>num)continue;
in[v]--;
if(!in[v]){
pq.push(v);
}
}
}
return ans.size() == (unsigned)n;
}
int main() {
// IN_PC();
scanf("%d%d", &n, &m);
for(int i = 0; i < m; i++) {
int k,p,pre;
scanf("%d", &k);
for(int j = 0; j < k; j++) {
scanf("%d", &p);
if(j)addedge(pre,p,i);
pre = p;
}
}
int l = 0, r = m - 1;
while(l < r) {
int mid = (l + r +1) / 2;
if(judge(mid))
l = mid;
else r = mid - 1;
}
judge(l);
for(unsigned int i=0;i<ans.size();i++)printf("%s%d",i==0?"":" ",ans[i]);
printf("\n");
return 0;
}
【二分+拓扑排序】Milking Order @USACO 2018 US Open Contest, Gold/upc_exam_6348的更多相关文章
- codeforces 645 D. Robot Rapping Results Report 二分+拓扑排序
题目链接 我们可以发现, 这是一个很明显的二分+拓扑排序.... 如何判断根据当前的点, 是否能构造出来一个唯一的拓扑序列呢. 如果有的点没有出现, 那么一定不满足. 如果在加进队列的时候, 同时加了 ...
- CF #CROC 2016 - Elimination Round D. Robot Rapping Results Report 二分+拓扑排序
题目链接:http://codeforces.com/contest/655/problem/D 大意是给若干对偏序,问最少需要前多少对关系,可以确定所有的大小关系. 解法是二分答案,利用拓扑排序看是 ...
- CodeForces - 1100E 二分+拓扑排序
题意: 一个n个节点的有向图,节点标号从1到n,存在m条单向边.每条单向边有一个权值,代表翻转其方向所需的代价.求使图变成无环图,其中翻转的最大边权值最小的方案,以及该方案翻转的最大的边权. Inpu ...
- CROC 2016 - Elimination Round (Rated Unofficial Edition) D. Robot Rapping Results Report 二分+拓扑排序
D. Robot Rapping Results Report 题目连接: http://www.codeforces.com/contest/655/problem/D Description Wh ...
- Codeforces Round #532 (Div. 2) E. Andrew and Taxi(二分+拓扑排序)
题目链接:https://codeforces.com/contest/1100/problem/E 题意:给出 n 个点 m 条边的有向图,要翻转一些边,使得有向图中不存在环,问翻转的边中最大权值最 ...
- USACO 2016 US Open Contest, Gold解题报告
1.Splitting the Field http://usaco.org/index.php?page=viewproblem2&cpid=645 给二维坐标系中的n个点,求ans=用一个 ...
- 拓扑排序(三)之 Java详解
前面分别介绍了拓扑排序的C和C++实现,本文通过Java实现拓扑排序. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑排序的代码说明 4. 拓扑排序的完整源码和测试程序 转载请注明出处 ...
- 拓扑排序(二)之 C++详解
本章是通过C++实现拓扑排序. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑排序的代码说明 4. 拓扑排序的完整源码和测试程序 转载请注明出处:http://www.cnblogs. ...
- 拓扑排序(一)之 C语言详解
本章介绍图的拓扑排序.和以往一样,本文会先对拓扑排序的理论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑 ...
随机推荐
- 使用jquery.more.js上滑加载更多
html: <div id="more"> <div class="single_item"> <div class=" ...
- luogu1355 神秘大三角
题解: 计算几何入门题 按逆时针方向访问三角形的边 然后作叉积判断点是否在边的顺时针方向 叉积和点积都有分配率 但不满足结合律 代码: #include <bits/stdc++.h> u ...
- Adjoint operators $T_K$ and $T_{K^{*}}$ in BEM
In our last article, we introduced four integral operators in the boundary integral equations in BEM ...
- net core体系-web应用程序-4net core2.0大白话带你入门-5asp.net core环境变量详解
asp.net core环境变量详解 环境变量详解 Windows操作系统的环境变量在哪设置应该都知道了. Linux(centos版本)的环境变量在/etc/profile里面进行设置.用户级的 ...
- js获取背景颜色
//js获取背景颜色var Airport=$("#Airport").css('background-color'); js设置背景颜色 $("#intercity&q ...
- springmvc+ajax——第一讲(搭建)
下面是整个整合测试的代码: ajax01.html TestController web.xml springmvc.xml applicationContext.xml <!DOCTYPE h ...
- 043 关于 loadrunner 返回 http 500 错误解决思路
这个支持项目中,总是出现500的问题,后来发现是redis总是崩掉. 后来,在压力测试,500的问题,又开始不断出现,虽然不是我自己处理的,但是没少吃苦头. 看了这篇文章,感觉说的还是很有道理,如何来 ...
- 使用loadrunner录制脚本的思路和注意要点
基本思路如下图: 注意要点有如下几点: 1.性能测试往往需要准备大批量的数据,大批量数据的生成方法有很多种,常见的有: (1)编写SQL语句来插入数据 (2)使用DataFactory等专业的数据生成 ...
- .net面试问答
转载自:https://www.cnblogs.com/dingfangbo/p/5768991.html .net面试问答(大汇总) 原文://http://blog.csdn.net/weny ...
- thinkphp5 行为(钩子)扩展
行为整理链接 浅谈PHP中的钩子 钩子相当于一个插件,在某些执行顺序上插入进去. 行为可以在写app接口中对所有请求执行到控制器前 执行用户权限判断,sign验证等,这样就不用在每个接口中判断了 注意 ...