进程池的同步与异步用法Pool
进程池的同步,如下程序:
from multiprocessing import Pool
import time
import os def func(n):
print('start 进程 %s'%n, os.getpid())
time.sleep(1)
print('end 进程 %s'%n, os.getpid()) if __name__ == "__main__":
pool = Pool() # 如果进程池不加数字,默认值为往前CPU的数量一样
for i in range(10):
pool.apply(func, args=(i,))
查看结果:
start 进程 0 21896
end 进程 0 21896
start 进程 1 27040
end 进程 1 27040
start 进程 2 23408
end 进程 2 23408
start 进程 3 29704
end 进程 3 29704
start 进程 4 31384
end 进程 4 31384
start 进程 5 2140
end 进程 5 2140
start 进程 6 25780
end 进程 6 25780
start 进程 7 29488
end 进程 7 29488
start 进程 8 21896
end 进程 8 21896
start 进程 9 27040
end 进程 9 27040
可以发现,变成了进程变成了同步得了,运行特别慢。
apply方法的作用就是将进程池的进程变成同步的。
将进程池变成异步的,使用apply_async就可以了,如下:
from multiprocessing import Pool
import time
import os def func(n):
print('start 进程 %s'%n, os.getpid())
time.sleep(1)
print('end 进程 %s'%n, os.getpid()) if __name__ == "__main__":
pool = Pool()
for i in range(10):
pool.apply_async(func, args=(i,))
但是发现结果什么都没有,因为主进程没有等子进程的结束就执行完了。
如下优化,使用join就行了:
from multiprocessing import Pool
import time
import os def func(n):
print('start 进程 %s'%n, os.getpid())
time.sleep(1)
print('end 进程 %s'%n, os.getpid()) if __name__ == "__main__":
pool = Pool()
for i in range(10):
pool.apply_async(func, args=(i,))
pool.close() # close()保证的是没有新的任务进入进程池
pool.join() # 这里的join检测的是子进程里面的任务结束,而不是子进程的结束,因为进程池里面的进程不会结束,永远活着,被用完之后会被还到进程池里面。
看结果:
start 进程 0 22364
start 进程 1 25820
start 进程 2 27688
start 进程 3 26840
start 进程 4 31100
start 进程 5 27032
start 进程 6 21452
start 进程 7 25592
end 进程 0 22364
start 进程 8 22364
end 进程 1 25820
start 进程 9 25820
end 进程 2 27688
end 进程 3 26840
end 进程 4 31100
end 进程 5 27032
end 进程 6 21452
end 进程 7 25592
end 进程 8 22364
end 进程 9 25820
值得注意的是,不加pool.close(),直接加pool.join()是会报错的,因为进程池里面的进程用完之后不会结束,而是被还到进程池了,因此这里的join检测的是没有任务再进入进程池了,而不是检测子进程的结束。所以要保证没有任务进入进程池,进程池就不会接收到任务,所以pool.close()的作用就是结束进程池接收任务,就是我的任务执行完毕,且没有新的任务进来,这是就被join检测到了。
另一种问题如下:
from multiprocessing import Pool
import time def func(n):
time.sleep(0.5)
return n*n if __name__ == "__main__":
pool = Pool(5)
for i in range(10):
ret = pool.apply(func, args=(i,))
print(ret)
打印结果:
0
1
4
9
16
25
36
49
64
81 # 每隔0.5秒打印一个结果
看下一段代码,使用apply_async:
from multiprocessing import Pool
import time def func(n):
time.sleep(0.5)
return n*n if __name__ == "__main__":
pool = Pool(5)
for i in range(10):
ret = pool.apply_async(func, args=(i,))
print(ret)
看打印结果:
<multiprocessing.pool.ApplyResult object at 0x0000023993E70AC8>
<multiprocessing.pool.ApplyResult object at 0x0000023993E70B70>
<multiprocessing.pool.ApplyResult object at 0x0000023993E70CF8>
<multiprocessing.pool.ApplyResult object at 0x0000023993E70DA0>
<multiprocessing.pool.ApplyResult object at 0x0000023993E70E80>
<multiprocessing.pool.ApplyResult object at 0x0000023993E70F28>
<multiprocessing.pool.ApplyResult object at 0x0000023993E70FD0>
<multiprocessing.pool.ApplyResult object at 0x0000023993E810B8>
<multiprocessing.pool.ApplyResult object at 0x0000023993E81160>
<multiprocessing.pool.ApplyResult object at 0x0000023993E81208>
是一个个对象,并且是同时打印出来的。
优化如下,使用get()方法获取值:
from multiprocessing import Pool
import time def func(n):
time.sleep(0.5)
return n*n if __name__ == "__main__":
pool = Pool(5)
for i in range(10):
ret = pool.apply_async(func, args=(i,))
print(ret.get())
看打印结果:
0
1
4
9
16
25
36
49
64
81
值出来的,但是你会发现一个现象,值是每隔0.5秒一个一个出来的,不是异步吗???
这里要注意for循环将任务传入如进程池时,
for i in range(10):
ret = pool.apply_async(func, args=(i,)) # for循环传入任务
print(ret.get())
执行到print(ret.get()),这里的get需要获取值,但是这是没有值,get就会让程序出现阻塞直到等到值,所以for循环的每一步都要等到值才会继续下一个for循环,就出现了不是异步的情况。
改进方法:
from multiprocessing import Pool
import time def func(n):
time.sleep(0.5)
return n*n if __name__ == "__main__":
pool = Pool(5)
l_list = []
for i in range(10):
ret = pool.apply_async(func, args=(i,))
l_list.append(ret)
for m in l_list:
print(m.get())
这时候你会发现五个五个的出现。
结束!
进程池的同步与异步用法Pool的更多相关文章
- 进程(并发,并行) join start 进程池 (同步异步)
一.背景知识 顾名思义,进程即正在执行的一个过程.进程是对正在运行程序的一个抽象.进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一.操作系统的其他所有 ...
- python 管道 事件(Event) 信号量 进程池(map/同步/异步)回调函数
####################总结######################## 管道:是进程间通信的第二种方式,但是不推荐使用,因为管道会导致数据不安全的情况出现 事件:当我运行主进程的 ...
- 4月27日 python学习总结 GIL、进程池、线程池、同步、异步、阻塞、非阻塞
一.GIL:全局解释器锁 1 .GIL:全局解释器锁 GIL本质就是一把互斥锁,是夹在解释器身上的, 同一个进程内的所有线程都需要先抢到GIL锁,才能执行解释器代码 2.GIL的优缺点: 优点: 保 ...
- spring线程池的同步和异步(1)
spring线程池(同步.异步) 一.spring异步线程池类图 二.简单介绍 2.1. TaskExecutor---Spring异步线程池的接口类,其实质是java.util.concurrent ...
- GIL全局解释器锁+GIL全局解释器锁vs互斥锁+定时器+线程queue+进程池与线程池(同步与异步)
以多线程为例写个互斥锁 from threading import Thread ,Lockimport timemutex = Lock() n = 100 def task(): global n ...
- day 32 管道,信号量,进程池,线程的创建
1.管道(了解) Pipe(): 在进程之间建立一条通道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process对象之前产生管道. ...
- {Python之进程} 背景知识 什么是进程 进程调度 并发与并行 同步\异步\阻塞\非阻塞 进程的创建与结束 multiprocess模块 进程池和mutiprocess.Poll
Python之进程 进程 本节目录 一 背景知识 二 什么是进程 三 进程调度 四 并发与并行 五 同步\异步\阻塞\非阻塞 六 进程的创建与结束 七 multiprocess模块 八 进程池和mut ...
- CIL锁,GIL与线程池的区别,进程池和线程池,同步与异步
一.GIL锁 什么是GIL? 全局解释器锁,是加在解释器上的互斥锁 GC是python自带的内存管理机制,GC的工作原理:python中的内存管理使用的是应用计数,每个数会被加上一个整型的计数器,表示 ...
- GIL 线程池 进程池 同步 异步
1.GIL(理论 重点)2.线程池 进程池3.同步 异步 GIL 是一个全局解释器锁,是一个互斥锁 为了防止竞争解释器资源而产生的 为何需要gil:因为一个python.exe进程中只有一份解释器,如 ...
随机推荐
- 微信小程序中遮罩层的滚动穿透问题
如果弹出层没有滚动事件: <view wx:if="{{alert}}" catchtouchmove="myCatchTouch"> <te ...
- 【转】SQL Server 事务隔离级别详解
SQL 事务隔离级别 概述 隔离级别用于决定如果控制并发用户如何读写数据的操作,同时对性能也有一定的影响作用. 步骤 事务隔离级别通过影响读操作来间接地影响写操作:可以在回话级别上设置事务隔离级别也可 ...
- javaScript系列 [01]-javaScript函数基础
[01]-javaScript函数基础 1.1 函数的创建和结构 函数的定义:函数是JavaScript的基础模块单元,包含一组语句,用于代码复用.信息隐蔽和组合调用. 函数的创建:在javaScri ...
- 输出cglib以及jdk动态代理产生的class文件
--该设置用于输出jdk动态代理产生的类 System.getProperties().put("sun.misc.ProxyGenerator.saveGeneratedFiles&q ...
- 搜索历史命令 Ctrl + R ( ctrl + r to search the history command )
Linux下的神器 ctrl + r (reverse-i-search ) 的使用方法: (reverse-i-search usage: ) (press ctl + r ) 输入任意字符,例 ...
- D3
D3.js是一个JavaScript库,它可以通过数据来操作文档.D3可以通过使用HTML.SVG和CSS把数据鲜活形象地展现出来.D3严格遵循Web标准,因而可以让你的程序轻松兼容现代主流浏览器并避 ...
- 【重要】将项目发布到Maven中央库
http://www.ruanyifeng.com/blog/2013/07/gpg.html
- Java中Lambda表达式的使用(转)
https://www.cnblogs.com/franson-2016/p/5593080.html 简介(译者注:虽然看着很先进,其实Lambda表达式的本质只是一个"语法糖" ...
- 并行排序ShearSort ---[MPI , c++]
思想: (1) 对于一个nxm的数组,使用N个work进行处理. (2) 先按行对数组进行升序和降序排序[由左至右],一般奇数序列work升序,偶数序号的work进行降序 (3)再按列对数组进行升序排 ...
- K-means算法原理
聚类的基本思想 俗话说"物以类聚,人以群分" 聚类(Clustering)是一种无监督学习(unsupervised learning),简单地说就是把相似的对象归到同一簇中.簇内 ...