题目链接

\(Description\)

有一张\(n\)个点的完全图,每个点的权值为\(a_i\),两个点之间的边权为\(a_i\ xor\ a_j\)。求该图的最小生成树。

\(n\leq2*10^5,0\leq ai<2^{30}\)。

\(Solution\)

代码好神啊。

依旧是从高到低考虑每一位。对于当前位i,如果所有点在这一位都为0或1,不需要管(任何边在这一位都为0)。

否则可以把点分为两个集合,即i位为0和1的集合,这两个集合间必须存在一条边,且边权这一位只能为1。

考虑怎么高效得到两个集合间的最小边。可以将一个集合的\(a_i\)插入Trie,再枚举另一个集合的点在Trie上走。

这样枚举每一位然后合并两个集合的点,再递归到两边(该位为0或1),就可以得到MST了。

这也是Borůvka算法的过程,不过用Trie可以将每次需\(O(m)\)的迭代优化到\(O(n\log a_{max})\)。

实现细节:可以先对所有点建Trie,并直接在Trie树上DFS,存在左右儿子时即会分为两个集合。

将\(a_i\)从小到大插入Trie,这样可对每个节点维护一个区间,表示 满足根到该节点01取值 的序列下标区间。这样枚举时就不需要暴力\(O(n)\)了。

复杂度\(O(n\log n\log a_{max})\)。基本到不了吧。(或者我分析错了吧)

//171ms	98200KB
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define BIT 29
typedef long long LL;
const int N=2e5+5; int read();
char IN[MAXIN],*SS=IN,*TT=IN;
struct Trie
{
#define ls son[x][0]
#define rs son[x][1]
#define S N*31
int n,A[N],tot,son[S][2],L[S],R[S];
LL Ans;
#undef S void Insert(int v,int id)
{
int x=0;
for(int i=BIT; ~i; --i)
{
int c=v>>i&1;
if(!son[x][c]) son[x][c]=++tot, L[tot]=R[tot]=id;
x=son[x][c];
L[x]=std::min(L[x],id), R[x]=std::max(R[x],id);
}
}
int Query(int x,int v,int bit)
{
if(bit<0||L[x]==R[x]) return A[L[x]];//同样注意第0位还可以继续递归==
int c=v>>bit&1;
return son[x][c]?Query(son[x][c],v,bit-1):(son[x][c^1]?Query(son[x][c^1],v,bit-1):0);
}
void DFS(int x,int bit)
{
// if(bit<0) return;
if(!bit)
{
if(ls&&rs) Ans+=A[L[ls]]^A[L[rs]];//第0位还会有分叉
return;
}
if(ls&&rs)
{
int res=0x7fffffff;
for(int i=L[ls],r=R[ls],p=rs; i<=r; ++i)
res=std::min(res,A[i]^Query(p,A[i],bit-1));
Ans+=res;
}
if(ls) DFS(ls,bit-1);
if(rs) DFS(rs,bit-1);
}
void Solve()
{
n=read();
for(int i=1; i<=n; ++i) A[i]=read();
std::sort(A+1,A+1+n);
for(int i=1; i<=n; ++i) Insert(A[i],i);
DFS(0,BIT), printf("%I64d\n",Ans);
}
}T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
} int main()
{
T.Solve();
return 0;
}

Codeforces.888G.Xor-MST(Borůvka算法求MST 贪心 Trie)的更多相关文章

  1. Borůvka (Sollin) 算法求 MST 最小生成树

    基本思路: 用定点数组记录每个子树的最近邻居. 对于每一条边进行处理: 如果这条边连成的两个顶点同属于一个集合,则不处理,否则检测这条边连接的两个子树,如果是连接这两个子树的最小边,则更新 (合并). ...

  2. 最小生成树-Borůvka算法

    一般求最小生成树的时候,最流行的是Kruskal算法,一种基于拟阵证明的贪心,通过给边排序再扫描一次边集,利用并查集优化得到,复杂度为\(O(ElogE)\).另一种用得比较少的是Prim算法,利用优 ...

  3. Kruskal vs Borůvka

    做了个对比.Borůvka算法对于稠密图效果特别好.这两个都是求生成森林的算法.Prim+heap+tarjan过于难写不写了. V=200,E=1000 Kruskal method 4875048 ...

  4. 克鲁斯卡尔(Kruskal)算法求最小生成树

    /* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #inc ...

  5. Prim求MST最小生成树

    最小生成树即在一个图中用最小权值的边将所有点连接起来.prim算法求MST其实它的主要思路和dijkstra的松弛操作十分相似 prim算法思想:在图中随便找一个点开始这里我们假定起点为“1”,以点1 ...

  6. 【做题】CSA72G - MST and Rectangles——Borůvka&线段树

    原文链接 https://www.cnblogs.com/cly-none/p/CSA72G.html 题意:有一个\(n \times n\)的矩阵\(A\),\(m\)次操作,每次在\(A\)上三 ...

  7. Borůvka algorithm

    Borůvka algorithm 我好无聊啊,直接把wiki的算法介绍翻译一下把. wiki关于Borůvka algorithm的链接:链接 Borůvka algorithm是一个在所有边权都是 ...

  8. Gym 101873D - Pants On Fire - [warshall算法求传递闭包]

    题目链接:http://codeforces.com/gym/101873/problem/D 题意: 给出 $n$ 个事实,表述为 "XXX are worse than YYY" ...

  9. C++迪杰斯特拉算法求最短路径

    一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...

随机推荐

  1. CentOS6.8安装MySQL5.7.20时报Curses library not found解决

    报错如下: CMakeErroratcmake/readline.cmake:83(MESSAGE): Curseslibrarynotfound.Pleaseinstallappropriatepa ...

  2. 步步為營-97-MyMVC3

    說明: 解決另外一個不合理之處:通過控制器完成處理 1:在mvc文件夾下面添加一個工廠類文件DefaultControllerFactory 1.2進一步升級為抽象工廠 2 下一步如何規範Contro ...

  3. Python深度学习案例1--电影评论分类(二分类问题)

    我觉得把课本上的案例先自己抄一遍,然后将书看一遍.最后再写一篇博客记录自己所学过程的感悟.虽然与课本有很多相似之处.但自己写一遍感悟会更深 电影评论分类(二分类问题) 本节使用的是IMDB数据集,使用 ...

  4. error: each element of 'ext_modules' option must be an Extension instance or 2-tuple

    在编译cython扩展时出现. 解决办法: 必须先import setup再import extension,否则报错 from setuptools import setup from distut ...

  5. RabbitMq相关运维

    # 命令查询所有用户列表rabbitmqctl list_users # 使用命令对 xiandian-admin 用户进行授权set_permissions xiandian-admin '.*' ...

  6. 腾讯应用宝Android 应用加固(乐固)操作说明(转)

    此处引用腾讯云对加固的优点说明如下: 为什么应用需要加固? 若应用不做任何安全防护,极易被病毒植入.广告替换.支付渠道篡改.钓鱼.信息劫持等,严重侵害开发者的利益. 应用进行安全防护,防止应用分发后, ...

  7. Caused by: java.net.ConnectException: Connection refused/Caused by: java.lang.RuntimeException: com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure

    1.使用sqoop技术将mysql的数据导入到Hive出现的错误如下所示: 第一次使用命令如下所示: [hadoop@slaver1 sqoop--cdh5.3.6]$ bin/sqoop impor ...

  8. 为什么dbms_metadata.get_ddl显示不全?

    http://bi.dataguru.cn/thread-335433-1-1.html

  9. signal() 和 sigaction()

    [摘自<Linux/Unix系统编程手册>] Unix系统提供了两种方式来改变信号处置:signal() 和 sigaction(). signal() 的行为在不同Unix实现间存在差异 ...

  10. HTML文本格式化与HTML 超链接

    文本格式化<b>加粗文本</b><i>斜体文本</i><code>电脑自动输出</code><sub> 下标< ...