题目链接

对于单独一个点,我们枚举它的度数(有多少条边)来计算它的贡献:$$\sum_{i=0}{n-1}ikC_{n-1}i2{\frac{(n-2)(n-1)}{2}}$$

每个点是一样的,所以$$Ans=n\cdot 2{\frac{(n-2)(n-1)}{2}}\sum_{i=0}{n-1}C_{n-1}iik$$

考虑如何计算\(\sum_{i=0}^{n-1}C_{n-1}^ii^k\)。

然后...dalao看到\(i^k\)就想起了第二类斯特林数:

\(S(n,m)\)即在\(m\)个无区别盒子中放\(n\)个不同小球的方案数(要求盒子非空)。

\(S(n,m)\)的一个公式为$$S(n,m)=\frac{1}{m!}\sum_{k=0}m(-1)kC_mk(m-k)n$$

即利用容斥,枚举空盒子至少有多少个。因为盒子无序所以再除以\(m!\)。

而利用反演,或者是组合意义可以得到:$$mn=\sum_{k=0}mC_m^kS(n,k)k!$$

斯特林数中的盒子是无序的所以再乘个\(k!\)。

(\(\sum\)的上界是\(m\)是\(n\)都可以,看需要)

为了方便先令\(n=n-1\)。

我们把\(m^n=\sum_{k=0}^mC_m^kS(n,k)k!\)代进\(Ans\)的\(\sum\)里:$$\sum_{i=0}nC_niik=\sum_{i=0}nC_ni\sum_{j=0}iC_i^j\cdot S(k,j)\cdot j!$$

然后,还是没法做就把\(j\)放到前面枚举试试:$$\sum_{j=0}^nS(k,j)\cdot j!\cdot\sum_{i=j}nC_niC_i^j$$

考虑一下\(\sum_{i=j}^nC_n^iC_i^j\)的组合意义,即从\(n\)个物品中选任意多个(至少\(j\)个),然后从它们中再选出\(j\)个。也就是从\(n\)个中选出\(j\)个后,其余\(n-j\)个任意选的方案数,即\(C_n^j2^{n-j}\)。

所以式子还可以化成:$$\sum_{j=0}^nS(k,j)\cdot j!\cdot C_n^j\cdot 2^{n-j}$$

后面的三项\(j!\cdot C_n^j\cdot 2^{n-j}\)(\(A_n^j\cdot 2^{n-j
}\))都可以直接算,所以我们只要算\(S(k,j)\)就可以了。同BZOJ4555,把上面的$$S(n,m)=\frac{1}{m!}\sum_{k=0}m(-1)kC_mk(m-k)n$$展开成$$S(n,m)=\sum_{k=0}m\frac{(-1)k}{k!}\cdot\frac{(m-k)^n}{(m-k)!}$$

是卷积形式,就可以用\(NTT\)计算了。(\(n<k\)时\(S(n,k)=0\),所以\(j\)枚举到\(\min(n,k)\)就好了)

//11060kb	11548ms
#include <cstdio>
#include <algorithm>
#define G 3
#define invG 332748118
#define inv2 499122177
#define mod 998244353
#define Mod(x) x>=mod&&(x-=mod)
#define Add(x,v) (x+=v)>=mod&&(x-=mod)
#define Mul(x,y) (1ll*(x)*(y)%mod)
typedef long long LL;
const int N=(1<<19)+5; int fac[N],ifac[N],f[N],g[N],rev[N]; inline int FP(int x,int k)
{
int t=1;
for(; k; k>>=1,x=Mul(x,x))
if(k&1) t=Mul(t,x);
return t;
}
void NTT(int *a,int lim,int opt)
{
for(int i=1; i<lim; ++i) if(i<rev[i]) std::swap(a[i],a[rev[i]]);
for(int i=2; i<=lim; i<<=1)
{
int mid=i>>1,Wn=FP(~opt?G:invG,(mod-1)/i);
for(int j=0; j<lim; j+=i)
for(int k=j,w=1,t; k<j+mid; ++k,w=Mul(w,Wn))
a[k+mid]=a[k]-(t=Mul(w,a[k+mid]))+mod, Mod(a[k+mid]),
a[k]+=t, Mod(a[k]);
}
if(opt==-1) for(int i=0,inv=FP(lim,mod-2); i<lim; ++i) a[i]=Mul(a[i],inv);
} int main()
{
int n,K; scanf("%d%d",&n,&K); --n;//!
int m=std::min(n,K);
fac[0]=fac[1]=1, ifac[0]=ifac[1]=1;
for(int i=2; i<=m; ++i) fac[i]=Mul(fac[i-1],i);
ifac[m]=FP(fac[m],mod-2);
for(int i=m; i; --i) ifac[i-1]=Mul(ifac[i],i); for(int i=0; i<=m; ++i) f[i]=i&1?mod-ifac[i]:ifac[i], g[i]=Mul(FP(i,K),ifac[i]);//x^K/x! (n=K)
int lim=1,l=-1;
while(lim<=m+m) lim<<=1,++l;
for(int i=1; i<lim; ++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l);
NTT(f,lim,1), NTT(g,lim,1);
for(int i=0; i<lim; ++i) f[i]=Mul(f[i],g[i]);
NTT(f,lim,-1); LL ans=0; int pw2=FP(2,n),A=1;//2^{n-i} A(n,i)
for(int i=0; i<=m; ++i) ans+=1ll*f[i]*A%mod*pw2%mod, pw2=Mul(pw2,inv2), A=Mul(A,n-i);
printf("%lld\n",ans%mod*(n+1)%mod*FP(2,(1ll*n*(n-1)>>1ll)%(mod-1))%mod); return 0;
}

BZOJ.5093.[Lydsy1711月赛]图的价值(NTT 斯特林数)的更多相关文章

  1. bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数

    [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 245  Solved: 128[Submit][Status][D ...

  2. BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT

    定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...

  3. BZOJ 5093: [Lydsy1711月赛]图的价值

    第二类斯特林数模版题 需要一些组合数的小$ trick$ upd:这里更新了本题巧妙的$ O(k)$做法,虽然常数很大就是了 传送门:here 题意:求所有$ n$个节点的无重边自环图的价值和,定义一 ...

  4. bzoj 5093 [Lydsy1711月赛]图的价值——第二类斯特林数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 不要见到组合数就拆! 枚举每个点的度数,则答案为 \( n*\sum\limits_{ ...

  5. 【bzoj5093】 [Lydsy1711月赛]图的价值 组合数+斯特林数+NTT

    Description "简单无向图"是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向 ...

  6. BZOJ 5093[Lydsy1711月赛]图的价值 线性做法

    博主曾更过一篇复杂度为$O( k· \log k)$的多项式做法在这里 惊闻本题有$ O(k)$的神仙做法,说起神仙我就想起了于是就去学习了一波 幂与第二类斯特林数 推导看这里 $$ x^k=\sum ...

  7. 【bzoj5093】[Lydsy1711月赛]图的价值(NTT+第二类斯特林数)

    题意: 给定\(n\)个点,一个图的价值定义为所有点的度数的\(k\)次方之和. 现在计算所有\(n\)个点的简单无向图的价值之和. 思路: 将式子列出来: \[ \sum_{i=1}^n\sum_{ ...

  8. BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】

    题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...

  9. bzoj5093:[Lydsy1711月赛]图的价值

    题目 首先考虑到这是一张有标号的图,每一个点的地位是相等的,因此我们只需要求出一个点的价值和乘上\(n\)就好了 考虑一个点有多少种情况下度数为\(i\) 显然我们可以让除了这个点的剩下的\(n-1\ ...

随机推荐

  1. Mesh无线网络的定义与WiFi的区别

    Mesh无线网络的定义与WiFi的区别 无线Mesh网络(无线网状网络)也称为「多跳(multi-hop)」网络,它是一种与传统无线网络完全不同的新型无线网络技术.无线网状网是一种基于多跳路由,对等网 ...

  2. anaconda中的包如何传到pycharm中使用?

    在pycharm的setting中设置 在project interpreter 中的 existing environment 中选择 anaconda3安装目录下的的 python.exe 就可以 ...

  3. Linux下source命令详解

    source命令用法 source FileName source命令作用 在当前bash环境下读取并执行FileName中的命令. *注:该命令通常用命令“.”来替代. 使用范例: source f ...

  4. MongoDB C#驱动给内嵌list添加数据

    Fc fc = new Fc() {}; var temp = Builders<MModel>.Filter.Where(m=>m.id== "882d4d22-ff70 ...

  5. Python_网络编程udp-飞秋自动攻击

    # 模拟一个接收数据import socketimport time def auto_hack(udp_socket, recv_msg, revc_ip, revc_port=2425): # 发 ...

  6. python 在WINDOS虚拟环境部署

    #查看电脑的版本 C:\Users\lys>pip -V pip 8.1.1 from e:\python\python3.5\lib\site-packages (python 3.5) #安 ...

  7. Dubbo 服务集群容错配置

    Dubbo集群容错是靠配置cluster属性来做 支持改属性的标签为<dubbo:service>,<dubbo:referece>,<dubbo:consumer> ...

  8. HTTP max-age与Expires的分别

    主要重点在于我们要明白一个相对(Expires)一个绝对(max-age). 分别 max-agemax-age是HTTP/1.1中,他是指我们的web中的文件被用户访问(请求)后的存活时间,是个相对 ...

  9. 基于STM32单片机光学指纹识别模块(FPM10A)全教程(基于C语言)

    本文转载,其来源在参考中:1,稍加修改,因为近期使用到这个模块,故而加以整理! 1.平台 首先我使用的是 奋斗 STM32 开发板 MINI板 基于STM32单片机光学指纹识别模块(FPM10A)全教 ...

  10. [转]GitHub for Windows 安装失败,An error occurred attempting to install github 的解决办法

    解决办法: 只需要将 http://github-windows.s3.amazonaws.com/GitHub.application http改为https,然后在IE上打开,安装即可 问题如下 ...