Parsing with Compositional Vector Grammars--paper
这篇和2012年的区别:
1)Max-Margin Training Objective
J中RNN变为了CVG
2012-两个词向量合并并打分,这个-两个(词向量,POS)合并并打分
2012年:
Socher et al. (2012) proposed to give every single word a matrix and a vector. The matrix is then applied to the sibling node’s vector during the composition. While this results in a powerful composition function that essentially depends on the words being combined, the number of model parameters explodes and the composition functions do not capture the syntactic commonalities between similar POS tags or syntactic categories
这篇:
The idea is that the syntactic categories of the children determine what composition function to use for computing the vector of their parents.
2)
The original RNN is parameterized by a single weight matrix W.
这篇:
In contrast, the CVG uses a syntactically untied RNN (SU-RNN) which has a set of such weights. The size of this set depends on the number of sibling category combinations in the PCFG.
3)Scoring Tree
2012:In order to compute a score of how plausible of a syntactic constituent a parent is the RNN uses a single-unit linear layer for all i: s(p (i) ) = v T p (i)
这篇:
First, a single linear unit that scores the parent vector and second, the log probability of the PCFG for the rule that combines these two children: s p (1) = v (B,C) T p (1) + log P(P1 → B C)
Parsing with Compositional Vector Grammars--paper的更多相关文章
- Deep Learning for NLP 文章列举
Deep Learning for NLP 文章列举 原文链接:http://www.xperseverance.net/blogs/2013/07/2124/ 大部分文章来自: http://w ...
- 转 Deep Learning for NLP 文章列举
原文链接:http://www.xperseverance.net/blogs/2013/07/2124/ 大部分文章来自: http://www.socher.org/ http://deepl ...
- tree-lstm初探
https://zhuanlan.zhihu.com/p/35252733 可以先看看上面知乎文章里面的例子 Socher 等人于2012和2013年分别提出了两种区分词或短语类型的模型,即SU-RN ...
- zz【清华NLP】图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐
[清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengy ...
- 论文翻译——Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank
Abstract Semantic word spaces have been very useful but cannot express the meaning of longer phrases ...
- (转) Deep Learning Resources
转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13 ...
- Official Program for CVPR 2015
From: http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am ...
- Topcoder SRM 639 (Div.2)
A.ElectronicPetEasy [题意]一个数st1开始,每次加p1,一共加t1次,另外一个数st2开始,每次加p2,一共加t2次,输入的数均小于1000,问这两个数有没有可能相等,有可能输出 ...
- Semantic Compositionality through Recursive Matrix-Vector Spaces-paper
Semantic Compositionality through Recursive Matrix-Vector Spaces 作者信息:Richard Socher Brody Huval Chr ...
随机推荐
- 剑指offer(33)丑数
题目描述 把只包含因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N个丑数. 题目分析 ...
- 剑指offer(64)滑动窗口中的最大值
题目描述 给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值.例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6 ...
- python常用内置函数详解
1.abs(x) 返回一个数字的绝对值.参数可以是整数或浮点数.如果参数是复数,则返回它的大小 n = abs(-12.5) print(n) # 12.5 2.all(iterable) 如果所有的 ...
- 5th,Python购物车模拟
1.启动程序后,输入用户名密码后,如果是第一次登录,让用户输入工资,然后打印商品列表 2.允许用户根据商品编号购买商品 3.用户选择商品后,检测余额是否够,够就直接扣款,不够就提醒 4.可随时退出,退 ...
- Java操作MongoDB:连接&增&删&改&查
1.连接 ①方式一 MongoClientOptions.Builder builder = MongoClientOptions.builder(); //可以通过builder做各种详细配置 Mo ...
- H5高德地图获取当前位置
<!doctype html> <html> <head> <meta charset="utf-8"> <meta http ...
- js之获取元素最终css属性
很多时候 我们是不用jquery库的,虽然他很好,获取元素最终的css属性我们可以用:getComputedStyle window.getComputedStyle(element, null).g ...
- python中mysql数据库的操作-sqlalchemy
MySQLdb支持python2.*,不支持3.* ,python3里面使用PyMySQL模块代替 python3里面如果有报错 django.core.exceptions.ImproperlyC ...
- Matlab:Crank Nicolson方法求解线性抛物方程
tic; clear clc M=[,,,,,,];%x的步数 K=M; %时间t的步数 :length(M) hx=/M(p); ht=/K(p); r=ht/hx^; %网格比 x=:hx:; t ...
- ZZW原创_rsync同步时由于注释问题引起的@ERROR: chdir failed
1.需求:A机器同步文件到B机器 2.问题: A机器执行如下命令: [root@sv0379 rsync]# rsync -vzrtopg --password-file=/usr/local/rs ...