Spark ML机器学习
Spark提供了常用机器学习算法的实现, 封装于spark.ml
和spark.mllib
中.
spark.mllib
是基于RDD的机器学习库, spark.ml
是基于DataFrame的机器学习库.
相对于RDD, DataFrame拥有更丰富的操作API, 可以进行更灵活的操作. 目前, spark.mllib
已经进入维护状态, 不再添加新特性.
本文将重点介绍pyspark.ml
, 测试环境为Spark 2.1, Python API.
首先介绍pyspark.ml
中的几个基类:
ML DataSet: 即为
pyspark.sql.DataFrame
作为数据集使用pyspark.ml.Transformer
: 代表将数据集转换到另一个数据集的算法pyspark.ml.Estimator
: 代表根据数据和参数创建模型的算法,包含方法fit(dataset, params)
: 根据训练数据集和参数进行训练, 返回训练好的模型对象
pyspark.ml.Model
: 代表训练好的模型的基类, 通常由Estimator.fit()
创建. 包含的方法有:transform(df)
: 将输入数据集代入模型变换为输出数据集save(path)
: 保存训练好的模型load(path)
: 从文件中加载模型
pyspark.ml.Pipeline
: 用于将多个步骤组合为管道进行处理, 可以建立线性管道和有向无环图管道.
pyspark.ml
下将不同算法封装到不同的包中:
pyspark.ml.linalg
线性代数工具包. 包括:Vector
DenseVector
SparseVector
Matrix
DenseMatrix
SparseMatrix
pyspark.ml.feature
特征和预处理算法包. 包括:Tokenizer
Normalizer
StopWordsRemover
PCA
NGram
Word2Vec
pyspark.ml.classification
分类算法包. 包括:LogisticRegression
DecisionTreeClassifier
RandomForestClassifier
NaiveBayes
MultilayerPerceptronClassifier
OneVsRest
pyspark.ml.clustering
聚类算法包. 包括:KMeans
LDA
pyspark.ml.regression
回归算法包. 包括:LinearRegression
GeneralizedLinearRegression
DecisionTreeRegressor
RandomForestRegressor
pyspark.ml.recommendation
推荐系统算法包. 包括:ALS
pyspark.ml.tuning
校验工具包pyspark.ml.evaluation
评估工具包
pyspark.ml
中的算法大多数为Estimator
的派生类. 大多数算法类均拥有对应的Model类.
如classification.NaiveBayes
和classification.NaiveBayesModel
. 算法类的fit
方法可以生成对应的Model类.
应用示例
pyspark.ml
使用了统一风格的接口,这里只展示部分算法.
首先用NaiveBayes分类器做一个二分类:
>>> from pyspark.sql import Row
>>> from pyspark.ml.linalg import Vectors
>>> df = spark.createDataFrame([
... Row(label=0.0, weight=0.1, features=Vectors.dense([0.0, 0.0])),
... Row(label=0.0, weight=0.5, features=Vectors.dense([0.0, 1.0])),
... Row(label=1.0, weight=1.0, features=Vectors.dense([1.0, 0.0]))])
>>> nb = NaiveBayes(smoothing=1.0, modelType="multinomial", weightCol="weight")
>>> model = nb.fit(df) # 构造模型
>>> test0 = sc.parallelize([Row(features=Vectors.dense([1.0, 0.0]))]).toDF()
>>> result = model.transform(test0).head() # 预测
>>> result.prediction
1.0
>>> result.probability
DenseVector([0.32..., 0.67...])
>>> result.rawPrediction
DenseVector([-1.72..., -0.99...])
model.transform
将输入的一行(Row)作为一个样本,产生一行输出. 这里我们只输入了一个测试样本, 所以直接使用head()
取出唯一一行输出.
使用LogisticRegression和OneVsRest做多分类:
>>> from pyspark.sql import Row
>>> from pyspark.ml.linalg import Vectors
>>> df = sc.parallelize([
... Row(label=0.0, features=Vectors.dense(1.0, 0.8)),
... Row(label=1.0, features=Vectors.sparse(2, [], [])),
... Row(label=2.0, features=Vectors.dense(0.5, 0.5))]).toDF()
>>> lr = LogisticRegression(maxIter=5, regParam=0.01)
>>> ovr = OneVsRest(classifier=lr)
>>> model = ovr.fit(df)
>>> # 进行预测
>>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0, 0.0))]).toDF()
>>> model.transform(test0).head().prediction
1.0
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.0]))]).toDF()
>>> model.transform(test1).head().prediction
0.0
>>> test2 = sc.parallelize([Row(features=Vectors.dense(0.5, 0.4))]).toDF()
>>> model.transform(test2).head().prediction
2.0
使用PCA进行降维:
>>> from pyspark.ml.linalg import Vectors
>>> data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),),
... (Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),
... (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]
>>> df = spark.createDataFrame(data,["features"])
>>> pca = PCA(k=2, inputCol="features", outputCol="pca_features")
>>> model = pca.fit(df)
>>> model.transform(df).head().pca_features
DenseVector([1.648..., -4.013...])
Estimator
和Transformer
均为PipelineStage
的派生类,pipeline由一系列Stage组成.调用pipeline对象的fit方法, 将会依次执行Stage并生成一个最终模型.
>>>from pyspark.ml import Pipeline
>>>from pyspark.ml.classification import LogisticRegression
>>>from pyspark.ml.feature import HashingTF, Tokenizer
>>> data = [
(0, "a b c d e spark", 1.0),
(1, "b d", 0.0),
(2, "spark f g h", 1.0),
(3, "hadoop mapreduce", 0.0) ]
>>> df = spark.createDataFrame(data, ["id", "text", "label"])
>>> # build pipeline
>>> tokenizer = Tokenizer(inputCol="text", outputCol="words")
>>> hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
>>> lr = LogisticRegression(maxIter=10, regParam=0.001)
>>> pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
>>> # train
>>> model = pipeline.fit(df)
>>> data2 = [
(4, "spark i j k"),
(5, "l m n"),
(6, "spark hadoop spark"),
(7, "apache hadoop")
]
>>> test = spark.createDataFrame(data2, ["id", "text"])
>>> result = model.transform(test)
>>> result = result.select("id", "text", "probability", "prediction")
>>> result.collect()
[Row(id=4, text=u'spark i j k', probability=DenseVector([0.1596, 0.8404]), prediction=1.0),
Row(id=5, text=u'l m n', probability=DenseVector([0.8378, 0.1622]), prediction=0.0),
Row(id=6, text=u'spark hadoop spark', probability=DenseVector([0.0693, 0.9307]), prediction=1.0),
Row(id=7, text=u'apache hadoop', probability=DenseVector([0.9822, 0.0178]), prediction=0.0)]
本文示例来源于官方文档
更多内容请参考:
Spark ML机器学习的更多相关文章
- Spark ML机器学习库评估指标示例
本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5.模型评估指标位于包org.apache.spark.ml.eval ...
- 使用spark ml pipeline进行机器学习
一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的 ...
- spark ml pipeline构建机器学习任务
一.关于spark ml pipeline与机器学习一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流 ...
- Spark ML下实现的多分类adaboost+naivebayes算法在文本分类上的应用
1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一 ...
- Spark ML源码分析之一 设计框架解读
本博客为作者原创,如需转载请注明参考 在深入理解Spark ML中的各类算法之前,先理一下整个库的设计框架,是非常有必要的,优秀的框架是对复杂问题的抽象和解剖,对这种抽象的学习本身 ...
- Spark ML源码分析之二 从单机到分布式
前一节从宏观角度给大家介绍了Spark ML的设计框架(链接:http://www.cnblogs.com/jicanghai/p/8570805.html),本节我们将介绍,Spar ...
- Spark ML源码分析之四 树
之前我们讲过,在Spark ML中所有的机器学习模型都是以参数作为划分的,树相关的参数定义在treeParams.scala这个文件中,这里构建一个关于树的体系结构.首先,以Decis ...
- Spark MLlib 机器学习
本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新 ...
- Spark ML 几种 归一化(规范化)方法总结
规范化,有关之前都是用 python写的, 偶然要用scala 进行写, 看到这位大神写的, 那个网页也不错,那个连接图做的还蛮不错的,那天也将自己的博客弄一下那个插件. 本文来源 原文地址:htt ...
随机推荐
- 20170805_linux
http://blog.csdn.net/aaaaatiger/archive/2007/07/28/1713611.aspx Delphi/Pascal code ? 1 2 3 4 5 6 7 ...
- python 用文本来提供输入信息的模板,不用每次都手动粘贴了
#下面这一段用一个txt来保存input的信息来模拟input.最后提交代码时候删除这一段即可. a9999=open('1.txt','r') def input(): return a9999.r ...
- 连续子数组和的最大值plus
package wodeshiyao; import java.io.BufferedWriter; import java.io.File; import java.io.FileInputStre ...
- HDU 5360 Hiking (贪心)
题意:邀请 n 参加聚会,如果在邀请第 i 个人之前,已经成功邀请了 x 个人,并且 li <= x <= ri,那么第 i 人才会去,问你怎么排列使得邀请的人最多. 析:对于所有的人,按 ...
- Canny边缘检测算法的一些改进
传统的Canny边缘检测算法是一种有效而又相对简单的算法,可以得到很好的结果(可以参考上一篇Canny边缘检测算法的实现).但是Canny算法本身也有一些缺陷,可以有改进的地方. 1. Canny边缘 ...
- js-闪烁的文字
<!DOCTYPE html><html> <head lang="en"> <meta charset=" ...
- 收藏的blog
https://www.cnblogs.com/xifengxiaoma/tag/vue/ https://www.cnblogs.com/xifengxiaoma/p/9400200.html
- jzoj5929. 【NOIP2018模拟10.26】情书
动态规划: #include<bits/stdc++.h> using namespace std; int n,iv[30]; #define mo 998244353 typedef ...
- Bashu2445 -- 【网络流24题-10】餐巾问题
2445 -- [网络流24题-10]餐巾问题 Description 一个餐厅在相继的n天里,每天需要用的餐巾数不尽相同.假设第i天需要ri块餐巾(i=1,2,…,n).餐厅可以购买新的餐巾,每块餐 ...
- linux安全加固浅谈
难易程度:★★★阅读点:linux;python;web安全;文章作者:xiaoye文章来源:i春秋关键字:网络渗透技术 前言linux被越来越多的企业使用,因此掌握一些基本的linux安全加固是有必 ...