hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)
【题目链接】:click here~~
- 样例输入
-
62247088
- 样例输出
-
17748018
描述
骨牌,一种古老的玩具。今天我们要研究的是骨牌的覆盖问题:
我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘。对于这个棋盘,一共有多少种不同的覆盖方法呢?
举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式:
输入
第1行:1个整数N。表示棋盘长度。1≤N≤100,000,000
输出
第1行:1个整数,表示覆盖方案数 MOD 19999997
【思路】矩阵快速幂
我们考虑在已经放置了部分骨牌(灰色)的情况下,下一步可以如何放置新的骨牌(蓝色):
最右边的一种情况是不可能发生的,否则会始终多一个格子没有办法放置骨牌。或者说灰色部分的格子数为奇数,不可能通过1x2个骨牌放置出来。
那么通过对上面的观察,我们可以发现:
在任何一个放置方案最后,一定满足前面两种情况。而灰色的部分又正好对应了长度为N-1和N-2时的放置方案。由此,我们可以得到递推公式:
f[n] = f[n-1] + f[n-2];
这个公式是不是看上去很眼熟?没错,这正是我们的费波拉契数列。
f[0]=1,f[1]=1,f[2]=2,...
当N很小的时候,我们直接通过递推公式便可以计算。当N很大的时候,只要我们的电脑足够好,我们仍然可以直接通过递推公式来计算。
但是我们学算法的,总是这样直接枚举不是显得很Low么,所以我们要用一个好的算法来加速(装X)。
事实上,对于这种线性递推式,我们可以用矩阵乘法来求第n项。对于本题Fibonacci数列,我们希望找到一个2x2的矩阵M,使得(a, b) x M = (b, a+b),其中(a,
b)和(b, a+b)都是1x2的矩阵。
显然,只需要取M = [0, 1; 1, 1]就可以了:
进一步得到:
那么接下来的问题是,能不能快速的计算出M^n?我们先来分析一下幂运算。由于乘法是满足结合律的,所以我们有:
不妨将k[1]..k[j]划分的更好一点?
其中(k[1],k[2]...k[j])2表示将n表示成二进制数后每一位的数字。上面这个公式同时满足这样一个性质:
结合这两者我们可以得到一个算法:
1. 先计算出所有的{a^1, a^2, a^4 ... a^(2^j)},因为该数列满足递推公式,时间复杂度为O(logN)
2. 将指数n二进制化,再利用公式将对应的a^j相乘计算出a^n,时间复杂度仍然为O(logN)
则总的时间复杂度为O(logN)
这种算法因为能够在很短时间内求出幂,我们称之为“快速幂”算法。
代码:
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const LL MOD=19999997;
LL N;
int i,j;
struct Matrlc
{
LL mapp[2][2];
} ans,base;
Matrlc unit= {1,0,0,1};
Matrlc mult(Matrlc a,Matrlc b) //矩阵乘法
{
Matrlc c;
for(int i=0; i<2; i++)
for(int j=0; j<2; j++)
{
c.mapp[i][j]=0;
for(int k=0; k<2; k++)
c.mapp[i][j]+=(a.mapp[i][k]*b.mapp[k][j])%MOD;
c.mapp[i][j]%=MOD;
}
return c;
}
LL pow(LL n) //快速幂运算
{
base.mapp[0][0] =base.mapp[0][1]=base.mapp[1][0]=1;
base.mapp[1][1]=0;
ans.mapp[0][0] = ans.mapp[1][1] = 1;// ans 初始化为单位矩阵
ans.mapp[0][1] = ans.mapp[1][0] = 0;
while(n)
{
if(n&1) ans=mult(ans,base);
base=mult(base,base);
n>>=1;
}
return ans.mapp[0][1]%MOD;
}
int main()
{
scanf("%lld",&N);
printf("%lld\n",pow(N+1)%MOD);
return 0;
}
/*
题目:
首先,这道题目是一道斐波那契数列的题目。
我们来分析一下,第三个图形是如何由前两个图形组成。
______ _______
| | | 或 | |____|
|____|_| |__|____| 扩展到第n个图形,我们有:
_____________ ______________
| | | 或 | |____|
|___________|_| |_________|____|
所以,f(n)=f(n-1)+f(n-2) 由于n可能会很大,所以我们需要一些计算的技巧。
斐波那契数列是可以由矩阵计算得到,如下: [a,b]* [0,1] = [b,a+b]
[1,1] 令mat =[0,1]
[1,1] 那么,理论上,我们乘以n个矩阵mat,就可以求得f(n),
但是n个矩阵相乘,时间复杂度为O(n),
这时候,我们采用快速幂运算来求解,可以把时间复杂度降为O(logn)。 */ #include<string>
#include <iomanip>
#include<fstream>
#include<set>
#include<queue>
#include<map>
//#include<unordered_set>
//#include<unordered_map>
//#include <sstream>
//#include "func.h"
//#include <list>
#include<stdio.h>
#include<iostream>
#include<string>
#include<memory.h>
#include<limits.h>
//#include<stack>
#include<vector>
#include <algorithm>
using namespace std;
#define MOD 19999997
class matrix22
{
public:
long long a1, a2;
long long b1, b2;
matrix22() :a1(0), a2(1), b1(1), b2(1){};
matrix22 operator*(const matrix22 tmp) // 重载矩阵乘法
{
matrix22 mat;
mat.a1 = (a1%MOD)*(tmp.a1%MOD) + (a2%MOD)*(tmp.b1%MOD);
mat.a2 = (a1%MOD)*(tmp.a2%MOD) + (a2%MOD)*(tmp.b2%MOD);
mat.b1 = (b1%MOD)*(tmp.a1%MOD) + (b2%MOD)*(tmp.b1%MOD);
mat.b2 = (b1%MOD)*(tmp.a2%MOD) + (b2%MOD)*(tmp.b2%MOD);
return mat;
}
};
/*
函数名 :main
函数功能:主函数
*/
int main(void)
{
int n;
scanf("%d", &n);
int dp1 = 1;
int dp2 = 2;
if (n <= 0) printf("0\n");
else if (n == 1) printf("1\n");
else if (n == 2) printf("2\n");
else
{
n -= 3;
matrix22 mat;
matrix22 ans;
while (n != 0)
{
//如果二进制该位为1,则ans*mat
if (n & 1)
ans = ans*mat;
//mat每次与自身相乘,求得矩阵的1,2,4,8,16次方
mat = mat*mat;
n = (n >> 1);
}
//输出f(n)
long long answer =( ans.a2 + 2 * ans.b2)%MOD;
cout << answer << endl; }
return 0;
}
hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)的更多相关文章
- HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- hdu 2604 递推 矩阵快速幂
HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
- Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)
题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...
- HDU6030 Happy Necklace(递推+矩阵快速幂)
传送门:点我 Little Q wants to buy a necklace for his girlfriend. Necklaces are single strings composed of ...
- 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)
题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...
- LightOJ 1244 - Tiles 猜递推+矩阵快速幂
http://www.lightoj.com/volume_showproblem.php?problem=1244 题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法.\(N < ...
- [递推+矩阵快速幂]Codeforces 1117D - Magic Gems
传送门:Educational Codeforces Round 60 – D 题意: 给定N,M(n <1e18,m <= 100) 一个magic gem可以分裂成M个普通的gem ...
- 2017中国大学生程序设计竞赛 - 女生专场 Happy Necklace(递推+矩阵快速幂)
Happy Necklace Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) ...
随机推荐
- Django复习
django复习 django和其他框架的对比 django,集成很多功能的大型框架,为开发者提供了很多方便的组件:orm.form.ModelForm.auth.admin.contenttypes ...
- C++ Primer 笔记——智能指针
1.新的标准库提供了两种智能指针类型,shared_ptr允许多个指针指向同一个对象,unique_ptr则独占所指的对象.标准库还定义了一个名为weak_ptr的伴随类,它是一种弱引用,指向shar ...
- mongodb数据中的复制(副本集)
---恢复内容开始--- 什么是复制 复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可用性,并可以保证数据的安全性 复制还允许从硬件故障和服务中断中恢复数据 为什么要复制 数据备 ...
- 插件使用一颜色选择器---cxColor
cxColor 是一款颜色选择器.这样的插件使用场景不多.可喜的这是国人写的. 官方网站: https://github.com/ciaoca/cxColor 使用方法: 1.引入jquery库 1 ...
- Django-model基础
Django-model基础 在Django-ORM中表和类存在映射关系 表名<------------>类名 字段<------------>属性 表记录<------ ...
- CORS跨域
一:简介 为什么会出现跨域问题? 受同源策略影响,不同域名之间不可以进行访问.同源策略(Same-Origin Policy).所谓的 同源 是指域名.协议.端口号 相同.不同的客户端脚本(JavaS ...
- 主流前端框架对比:Vue.js , React, Angular.js
个人认为Vue.js的文档最恳切.我认为结合文档和遇到问题Google答案的匹配度来讲:Vue.js > ReactJS > AngularJS > Angular 2 如何使用Vu ...
- AspNetCore MVC + Vue.Js 项目搭建
1.准备 全文重点在于搭建环境,其他相关知识点请百度. VS2017 升级到最新的版本 安装 net core 2.0 安装 npm (npm相关使用请百度或咨询前端小伙伴) 全局安装 webpack ...
- 【Android】Android 手机忘记锁屏密码的解决办法
对于忘记Android锁屏密码的筒子们,除重新刷包或者wipe data外,还可用adb来删除密码: 方法很简单 1.手机连接电脑,不要打开数据连接,在充电模式下进行. 2.在电脑上,解压adb.zi ...
- Python_生成器generator
生成器:调用时返回一个迭代器 如果一个函数中包含yield语法,那这个函数就会变成一个生成器 例1: def draw_money(draw): #这个函数称为生成器 while draw >0 ...