进程池Pool

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来执行,请看下面的实例:

from multiprocessing import Pool
import os,time,random def worker(msg):
t_start = time.time()
print("%s开始执行,进程号为%d"%(msg,os.getpid()))
#random.random()随机生成0~1之间的浮点数
time.sleep(random.random()*2)
t_stop = time.time()
print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start)) po=Pool(3) #定义一个进程池,最大进程数3
for i in range(0,10):
#Pool.apply_async(要调用的目标,(传递给目标的参数元祖,))
#每次循环将会用空闲出来的子进程去调用目标
po.apply_async(worker,(i,)) print("----start----")
po.close() #关闭进程池,关闭后po不再接收新的请求
po.join() #等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")

运行结果:

----start----
0开始执行,进程号为21466
1开始执行,进程号为21468
2开始执行,进程号为21467
0 执行完毕,耗时1.01
3开始执行,进程号为21466
2 执行完毕,耗时1.24
4开始执行,进程号为21467
3 执行完毕,耗时0.56
5开始执行,进程号为21466
1 执行完毕,耗时1.68
6开始执行,进程号为21468
4 执行完毕,耗时0.67
7开始执行,进程号为21467
5 执行完毕,耗时0.83
8开始执行,进程号为21466
6 执行完毕,耗时0.75
9开始执行,进程号为21468
7 执行完毕,耗时1.03
8 执行完毕,耗时1.05
9 执行完毕,耗时1.69
-----end-----

multiprocessing.Pool常用函数解析:

  • apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;

  • apply(func[, args[, kwds]]):使用阻塞方式调用func

  • close():关闭Pool,使其不再接受新的任务;

  • terminate():不管任务是否完成,立即终止;

  • join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;

apply堵塞式

from multiprocessing import Pool
import os,time,random def worker(msg):
t_start = time.time()
print("%s开始执行,进程号为%d"%(msg,os.getpid()))
#random.random()随机生成0~1之间的浮点数
time.sleep(random.random()*2)
t_stop = time.time()
print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start)) po=Pool(3) #定义一个进程池,最大进程数3
for i in range(0,10):
po.apply(worker,(i,)) print("----start----")
po.close() #关闭进程池,关闭后po不再接收新的请求
po.join() #等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")

运行结果:

0开始执行,进程号为21532
0 执行完毕,耗时1.91
1开始执行,进程号为21534
1 执行完毕,耗时1.72
2开始执行,进程号为21533
2 执行完毕,耗时0.50
3开始执行,进程号为21532
3 执行完毕,耗时1.27
4开始执行,进程号为21534
4 执行完毕,耗时1.05
5开始执行,进程号为21533
5 执行完毕,耗时1.60
6开始执行,进程号为21532
6 执行完毕,耗时0.25
7开始执行,进程号为21534
7 执行完毕,耗时0.63
8开始执行,进程号为21533
8 执行完毕,耗时1.21
9开始执行,进程号为21532
9 执行完毕,耗时0.60
----start----
-----end-----

进程间通信-Queue

Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。

1. Queue的使用

可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:

#coding=utf-8
from multiprocessing import Queue
q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息
q.put("消息1")
q.put("消息2")
print(q.full()) #False
q.put("消息3")
print(q.full()) #True #因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
q.put("消息4",True,2)
except:
print("消息列队已满,现有消息数量:%s"%q.qsize()) try:
q.put_nowait("消息4")
except:
print("消息列队已满,现有消息数量:%s"%q.qsize()) #推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
q.put_nowait("消息4") #读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
for i in range(q.qsize()):
print(q.get_nowait())

说明

初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);

  • Queue.qsize():返回当前队列包含的消息数量;

  • Queue.empty():如果队列为空,返回True,反之False ;

  • Queue.full():如果队列满了,返回True,反之False;

  • Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True;

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;

2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;

  • Queue.get_nowait():相当Queue.get(False);

  • Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True;

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;

2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;

  • Queue.put_nowait(item):相当Queue.put(item, False);

2. Queue实例

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queue
import os, time, random # 写数据进程执行的代码:
def write(q):
for value in ['A', 'B', 'C']:
print 'Put %s to queue...' % value
q.put(value)
time.sleep(random.random()) # 读数据进程执行的代码:
def read(q):
while True:
if not q.empty():
value = q.get(True)
print 'Get %s from queue.' % value
time.sleep(random.random())
else:
break if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 等待pw结束:
pw.join()
# 启动子进程pr,读取:
pr.start()
pr.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
print ''
print '所有数据都写入并且读完'

3. 进程池中的Queue

如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:

RuntimeError: Queue objects should only be shared between processes through inheritance.

下面的实例演示了进程池中的进程如何通信:

#coding=utf-8

#修改import中的Queue为Manager
from multiprocessing import Manager,Pool
import os,time,random def reader(q):
print("reader启动(%s),父进程为(%s)"%(os.getpid(),os.getppid()))
for i in range(q.qsize()):
print("reader从Queue获取到消息:%s"%q.get(True)) def writer(q):
print("writer启动(%s),父进程为(%s)"%(os.getpid(),os.getppid()))
for i in "dongGe":
q.put(i) if __name__=="__main__":
print("(%s) start"%os.getpid())
q=Manager().Queue() #使用Manager中的Queue来初始化
po=Pool()
#使用阻塞模式创建进程,这样就不需要在reader中使用死循环了,可以让writer完全执行完成后,再用reader去读取
po.apply(writer,(q,))
po.apply(reader,(q,))
po.close()
po.join()
print("(%s) End"%os.getpid())

python系统编程(四)的更多相关文章

  1. python系统编程(一)

    进程的创建-fork 1. 进程 VS 程序 编写完毕的代码,在没有运行的时候,称之为程序 正在运行着的代码,就成为进程 进程,除了包含代码以外,还有需要运行的环境等,所以和程序是有区别的 2. fo ...

  2. Python系统编程笔记

    01. 进程与程序 编写完毕的代码,在没有运行的时候,称之为程序 正在运行着的代码,就称为进程 进程是系统分配资源的最小单位. 进程资源包括: 中间变量 代码 计数器 02. 通过os.fork()函 ...

  3. python系统编程(九)

    同步的概念 1. 多线程开发可能遇到的问题 假设两个线程t1和t2都要对num=0进行增1运算,t1和t2都各对num修改10次,num的最终的结果应该为20. 但是由于是多线程访问,有可能出现下面情 ...

  4. python系统编程(八)

    进程VS线程 功能 进程,能够完成多任务,比如 在一台电脑上能够同时运行多个QQ 线程,能够完成多任务,比如 一个QQ中的多个聊天窗口 定义的不同 进程是系统进行资源分配和调度的一个独立单位. 线程是 ...

  5. python系统编程(六)

    threading注意点 1. 线程执行代码的封装 通过上一小节,能够看出,通过使用threading模块能完成多任务的程序开发,为了让每个线程的封装性更完美,所以使用threading模块时,往往会 ...

  6. python系统编程(五)

    多线程-threading python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用 1. 使用threading模块 ...

  7. python系统编程(三)

    multiprocessing 如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择.由于Windows没有fork调用,难道在Windows上无法用Python编写多进程的程序? 由 ...

  8. python系统编程(十二)

    异步 同步调用就是你 喊 你朋友吃饭 ,你朋友在忙 ,你就一直在那等,等你朋友忙完了 ,你们一起去 异步调用就是你 喊 你朋友吃饭 ,你朋友说知道了 ,待会忙完去找你 ,你就去做别的了. from m ...

  9. python系统编程(十一)

    同步应用 多个线程有序执行 from threading import Thread,Lock from time import sleep class Task1(Thread): def run( ...

随机推荐

  1. json如果不在pom中添加依赖会抛出500异常

    所以必须添加以下依赖: <!--jackson相关依赖--><!-- https://mvnrepository.com/artifact/com.fasterxml.jackson ...

  2. jetbrains全系列可用例:IDEA、WebStorm、phpstorm、clion等激活到2099

    破解补丁激活 之前看了好多的其它的方法感觉都不是很靠谱还是这个本人亲试可以长期有效不仅能激活pycharm.jetbrains全系列可用例:IDEA.WebStorm.phpstorm.clion等激 ...

  3. C#enum使用Attribute求字段名

    用到了一些反射:(自己看吧) public enum UserState { /// <summary> /// 正常 /// </summary> [Remark(" ...

  4. 反射PropertyInfo的简单使用

    namespace EF6._0Test { class Program { /// <summary> /// PropertyInfo的简单使用 /// </summary> ...

  5. Java集合源码学习(四)HashMap

    一.数组.链表和哈希表结构 数据结构中有数组和链表来实现对数据的存储,这两者有不同的应用场景,数组的特点是:寻址容易,插入和删除困难:链表的特点是:寻址困难,插入和删除容易:哈希表的实现结合了这两点, ...

  6. HTML学习之给div高度设置百分比不生效的问题

    这几天在学习HTML的知识,今天想做一个极为简单的页面,就是分为头部,内容和底部,本来用三个div即可,可是给div高度设置百分比时发现不生效,具体页面如下,非常简单. 下面是html部分: < ...

  7. 【CF666E】Forensic Examination

    题解: 熟练掌握了后缀自动机后大部分题目应该都比较容易想 首先对t建立广义后缀自动机 然后我们可以用线段树合并处理出每个点每个串出现的次数,然后求出最大值 匹配的时候比较巧妙 我们离线处理 对于同一个 ...

  8. java抽象类详解

    前言 在没讲抽象类之前  我们先来看看 final关键字 final 修饰符 可以修饰 类.属性.方法 修饰类时  表示该类不能被继承   其他特征 跟普通的类一样 修饰 属性时 表示 改属性不能改变 ...

  9. 分布式系统的BASE理论

    一.BASE理论 eBay的架构师Dan Pritchett源于对大规模分布式系统的实践总结,在ACM上发表文章提出BASE理论,BASE理论是对CAP理论的延伸,核心思想是即使无法做到强一致性(St ...

  10. 需求:lr需要在一串数字中随机位置插入一个新数字的实现方式

    效果如下: 需要用到sscanf()函数:  从一个字符串中读进与指定格式相符的数据. Action() { ],s2[],s3[]; int n=atoi(lr_eval_string(" ...