python系统编程(四)
进程池Pool
当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。
初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来执行,请看下面的实例:
from multiprocessing import Pool
import os,time,random def worker(msg):
t_start = time.time()
print("%s开始执行,进程号为%d"%(msg,os.getpid()))
#random.random()随机生成0~1之间的浮点数
time.sleep(random.random()*2)
t_stop = time.time()
print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start)) po=Pool(3) #定义一个进程池,最大进程数3
for i in range(0,10):
#Pool.apply_async(要调用的目标,(传递给目标的参数元祖,))
#每次循环将会用空闲出来的子进程去调用目标
po.apply_async(worker,(i,)) print("----start----")
po.close() #关闭进程池,关闭后po不再接收新的请求
po.join() #等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")
运行结果:
----start----
0开始执行,进程号为21466
1开始执行,进程号为21468
2开始执行,进程号为21467
0 执行完毕,耗时1.01
3开始执行,进程号为21466
2 执行完毕,耗时1.24
4开始执行,进程号为21467
3 执行完毕,耗时0.56
5开始执行,进程号为21466
1 执行完毕,耗时1.68
6开始执行,进程号为21468
4 执行完毕,耗时0.67
7开始执行,进程号为21467
5 执行完毕,耗时0.83
8开始执行,进程号为21466
6 执行完毕,耗时0.75
9开始执行,进程号为21468
7 执行完毕,耗时1.03
8 执行完毕,耗时1.05
9 执行完毕,耗时1.69
-----end-----
multiprocessing.Pool常用函数解析:
apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
apply(func[, args[, kwds]]):使用阻塞方式调用func
close():关闭Pool,使其不再接受新的任务;
terminate():不管任务是否完成,立即终止;
join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;
apply堵塞式
from multiprocessing import Pool
import os,time,random def worker(msg):
t_start = time.time()
print("%s开始执行,进程号为%d"%(msg,os.getpid()))
#random.random()随机生成0~1之间的浮点数
time.sleep(random.random()*2)
t_stop = time.time()
print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start)) po=Pool(3) #定义一个进程池,最大进程数3
for i in range(0,10):
po.apply(worker,(i,)) print("----start----")
po.close() #关闭进程池,关闭后po不再接收新的请求
po.join() #等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")
运行结果:
0开始执行,进程号为21532
0 执行完毕,耗时1.91
1开始执行,进程号为21534
1 执行完毕,耗时1.72
2开始执行,进程号为21533
2 执行完毕,耗时0.50
3开始执行,进程号为21532
3 执行完毕,耗时1.27
4开始执行,进程号为21534
4 执行完毕,耗时1.05
5开始执行,进程号为21533
5 执行完毕,耗时1.60
6开始执行,进程号为21532
6 执行完毕,耗时0.25
7开始执行,进程号为21534
7 执行完毕,耗时0.63
8开始执行,进程号为21533
8 执行完毕,耗时1.21
9开始执行,进程号为21532
9 执行完毕,耗时0.60
----start----
-----end-----
进程间通信-Queue
Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。
1. Queue的使用
可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:
#coding=utf-8
from multiprocessing import Queue
q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息
q.put("消息1")
q.put("消息2")
print(q.full()) #False
q.put("消息3")
print(q.full()) #True #因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
q.put("消息4",True,2)
except:
print("消息列队已满,现有消息数量:%s"%q.qsize()) try:
q.put_nowait("消息4")
except:
print("消息列队已满,现有消息数量:%s"%q.qsize()) #推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
q.put_nowait("消息4") #读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
for i in range(q.qsize()):
print(q.get_nowait())
说明
初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);
Queue.qsize():返回当前队列包含的消息数量;
Queue.empty():如果队列为空,返回True,反之False ;
Queue.full():如果队列满了,返回True,反之False;
Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True;
1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;
2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;
Queue.get_nowait():相当Queue.get(False);
Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True;
1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;
2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;
- Queue.put_nowait(item):相当Queue.put(item, False);
2. Queue实例
我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:
from multiprocessing import Process, Queue
import os, time, random # 写数据进程执行的代码:
def write(q):
for value in ['A', 'B', 'C']:
print 'Put %s to queue...' % value
q.put(value)
time.sleep(random.random()) # 读数据进程执行的代码:
def read(q):
while True:
if not q.empty():
value = q.get(True)
print 'Get %s from queue.' % value
time.sleep(random.random())
else:
break if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 等待pw结束:
pw.join()
# 启动子进程pr,读取:
pr.start()
pr.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
print ''
print '所有数据都写入并且读完'
3. 进程池中的Queue
如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:
RuntimeError: Queue objects should only be shared between processes through inheritance.
下面的实例演示了进程池中的进程如何通信:
#coding=utf-8 #修改import中的Queue为Manager
from multiprocessing import Manager,Pool
import os,time,random def reader(q):
print("reader启动(%s),父进程为(%s)"%(os.getpid(),os.getppid()))
for i in range(q.qsize()):
print("reader从Queue获取到消息:%s"%q.get(True)) def writer(q):
print("writer启动(%s),父进程为(%s)"%(os.getpid(),os.getppid()))
for i in "dongGe":
q.put(i) if __name__=="__main__":
print("(%s) start"%os.getpid())
q=Manager().Queue() #使用Manager中的Queue来初始化
po=Pool()
#使用阻塞模式创建进程,这样就不需要在reader中使用死循环了,可以让writer完全执行完成后,再用reader去读取
po.apply(writer,(q,))
po.apply(reader,(q,))
po.close()
po.join()
print("(%s) End"%os.getpid())
python系统编程(四)的更多相关文章
- python系统编程(一)
进程的创建-fork 1. 进程 VS 程序 编写完毕的代码,在没有运行的时候,称之为程序 正在运行着的代码,就成为进程 进程,除了包含代码以外,还有需要运行的环境等,所以和程序是有区别的 2. fo ...
- Python系统编程笔记
01. 进程与程序 编写完毕的代码,在没有运行的时候,称之为程序 正在运行着的代码,就称为进程 进程是系统分配资源的最小单位. 进程资源包括: 中间变量 代码 计数器 02. 通过os.fork()函 ...
- python系统编程(九)
同步的概念 1. 多线程开发可能遇到的问题 假设两个线程t1和t2都要对num=0进行增1运算,t1和t2都各对num修改10次,num的最终的结果应该为20. 但是由于是多线程访问,有可能出现下面情 ...
- python系统编程(八)
进程VS线程 功能 进程,能够完成多任务,比如 在一台电脑上能够同时运行多个QQ 线程,能够完成多任务,比如 一个QQ中的多个聊天窗口 定义的不同 进程是系统进行资源分配和调度的一个独立单位. 线程是 ...
- python系统编程(六)
threading注意点 1. 线程执行代码的封装 通过上一小节,能够看出,通过使用threading模块能完成多任务的程序开发,为了让每个线程的封装性更完美,所以使用threading模块时,往往会 ...
- python系统编程(五)
多线程-threading python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用 1. 使用threading模块 ...
- python系统编程(三)
multiprocessing 如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择.由于Windows没有fork调用,难道在Windows上无法用Python编写多进程的程序? 由 ...
- python系统编程(十二)
异步 同步调用就是你 喊 你朋友吃饭 ,你朋友在忙 ,你就一直在那等,等你朋友忙完了 ,你们一起去 异步调用就是你 喊 你朋友吃饭 ,你朋友说知道了 ,待会忙完去找你 ,你就去做别的了. from m ...
- python系统编程(十一)
同步应用 多个线程有序执行 from threading import Thread,Lock from time import sleep class Task1(Thread): def run( ...
随机推荐
- 异常:Keyword not supported: 'data source'的解决办法
将连接字符串中的"换为“'”,一个单引号即可. 详细解释:https://blogs.msdn.microsoft.com/rickandy/2008/12/09/explicit-c ...
- Python推荐系统库--Surprise实战
一.使用movieLens数据集 from surprise import KNNBasic, SVD from surprise import Dataset from surprise impor ...
- 011-Python-进程、线程于协程
1.进程与线程 进程: 一个程序要运行时所需的所有资源的集合: 一个进程至少需要一个线程,这个线程称为主线程,一个进程里可以包含多个线程: cpu 核数越多,代表着你可以真正并发的线程越多2个进程之间 ...
- Django-model聚合查询与分组查询
Django-model聚合查询与分组查询 聚合函数包含:SUM AVG MIN MAX COUNT 聚合函数可以单独使用,不一定要和分组配合使用:不过聚合函数一般和group by 搭配使用 agg ...
- 编写UEditor插件
UE.registerUI('beijing', function (editor, uiName) { // 注册按钮执行时的command命令 editor.registerCommand(uiN ...
- LeetCode高频148错题记录
3. Max Points on a Line 共线点个数3种解法 思路一:思考如何确定一条直线,两点法,确定斜率后带入一点.有三种情况,1. 两点重合,2. 斜率不存在,3. 正常算,依次以每个点为 ...
- angular 4 开发环境下打包文件过大
angular 4本地开发环境下,ng server -- port 8080 -o 之后在在浏览器中查看数据请求,其中vendor.bundle.js有8.3mb,而整个传输数据大小为16.3mb ...
- mysql8.0.11绿色版安装教程
解压到安装目录 在根目录建立data文件夹 建立my.ini文件 代码如下 # Other default tuning values # MySQL Server Instance Configur ...
- [转]Ubuntu默认使用root用户登录并免去输入密码
启用Root用户登录 Ctrl + Alt + T进入终端, 输入cd /usr/share/lightm/ightm.conf.d, 如果提示你没有那个文件或目录.那就一次次的进入目录. 进入之后会 ...
- .net core跨平台的文件路径
windows下路径为:"xxxx\\yyyy" linux路径下为:"xxxx/yyyy" 用Path.Combine("xxxx",&q ...