Seaborn入门
Seaborn入门
Seaborn是基于matplotlib的python数据可视化库,提供更高层次的API封装,使用起来更加方便快捷。
displot
displot()集成了hist直方图和kde核函数估计的功能,函数如下:
seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)
'''
a:Series, 1d-array or list. 数据来源
bins:矩形图数量
hist:是否显示直方图
kde:是否显示核函数估计图
rug:控制是否显示观察的边际毛毯
fit:控制拟合的参数分布图形
vertical:显示正交控制
'''
#例
In [41]: x = np.random.normal(size=200)
In [42]: sns.distplot(x)
Out[42]: <matplotlib.axes._subplots.AxesSubplot at 0x11aa43490>
In [43]: plt.show()
barplot与countplot
barplot描述某种变量分布的平均值
seaborn.barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,ci=95, n_boot=1000, units=None, orient=None, color=None, palette=None, saturation=0.75, errcolor='.26', errwidth=None, capsize=None, ax=None, estimator=<function mean>,**kwargs)
'''
x, y, hue:设置x,y以及颜色控制的变量
data:输入的数据集
order, hue_order:控制变量绘图的顺序
estimator:设置对每类变量的计算函数,默认为平均值,可修改为max、median、max等
ax:设置子图位置
orient:"v"|"h",控制绘图的方向,水平或者竖直
capsize:设置误差棒帽条的宽度
'''
#例
In [58]: tips = sns.load_dataset("tips") #载入自带数据集
In [59]: ax = sns.barplot(x="day", y="total_bill", hue="sex", data=tips)
In [60]: plt.show()
countplot用来计数
seaborn.countplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=0.75, ax=None, **kwargs)
'''
设置方法跟barplot类似
'''
#例
In [68]: titanic = sns.load_dataset("titanic")
In [69]: sns.countplot(x="alone", hue="who", data=titanic)
Out[69]: <matplotlib.axes._subplots.AxesSubplot at 0x126b82590>
In [70]: plt.show()
boxplot与violinplot
箱式图
可以表示数据的位置及分散情况,还能区分异常点
seaborn.boxplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=0.75, width=0.8, fliersize=5, linewidth=None, whis=1.5, notch=False, ax=None, **kwargs)
'''
参数与前面一致
'''
#例
In [76]:sns.boxplot(x="day", y="total_bill", hue="smoker",data=tips)
In [77]:plt.show() #外面的点为异常点
琴式图
琴式图的信息量更大,还加上了概率分布
sns.violinplot(x="day", y="total_bill", hue="smoker",data=tips)
线性回归模型
implot是一种集合基础绘图与基于数据建立回归模型的绘图方法。旨在创建一个方便拟合数据集回归模型的绘图方法,利用'hue'、'col'、'row'参数来控制绘图变量。
seaborn.lmplot(x, y, data, hue=None, col=None, row=None, palette=None, col_wrap=None, size=5, aspect=1, markers='o', sharex=True, sharey=True, hue_order=None, col_order=None, row_order=None, legend=True, legend_out=True, x_estimator=None, x_bins=None, x_ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=False, x_jitter=None, y_jitter=None, scatter_kws=None, line_kws=None)
'''
hue, col, row:strings 定义数据子集的变量,并在不同的图像子集中绘制
size:scalar 定义子图的高度
markers:定义散点的图标
col_wrap:设置每行子图数量
order:多项式回归,设定指数,可以用多项式拟合
logistic:逻辑回归
logx:转化为log(x)
'''
#例
sns.lmplot(x="total_bill", y="tip", col="day", hue="day",data=tips, col_wrap=2, size=3)
小结
Seaborn简洁而强大,和pandas、numpy组合使用效果更佳,以上介绍了一些常用功能,其他的就即用即查吧。
值得注意的是,Seaborn并不是matplotlib的代替品,很多时候仍然需要使用matplotlib的。
Seaborn入门的更多相关文章
- python数据分析入门学习笔记
学习利用python进行数据分析的笔记&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分 ...
- python数据分析入门学习笔记儿
学习利用python进行数据分析的笔记儿&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据 ...
- python数据分析入门笔记[1]
1.Numpy: Numpy是python科学计算的基础包,它提供以下功能(不限于此): (1)快速高效的多维数组对象naarray (2)用于对数组执行元素级计算以及直接对数组执行数学运算的函数 ( ...
- Seaborn数据可视化入门
在本节学习中,我们使用Seaborn作为数据可视化的入门工具 Seaborn的官方网址如下:http://seaborn.pydata.org 一:definition Seaborn is a Py ...
- 数据可视化(三)- Seaborn简易入门
本文内容来源:https://www.dataquest.io/mission/133/creating-compelling-visualizations 本文数据来源:http://www.cdc ...
- 机器学习初入门04 – Seaborn(持续更新)
Seaborn库可以说是在matplotlib库上的一个封装,它给我们提供了非常丰富的模板 一.整体布局风格设置 import seaborn as sns import numpy as np im ...
- Python 初学者 入门 应该学习 python 2 还是 python 3?
许多刚入门 Python 的朋友都在纠结的的问题是:我应该选择学习 python2 还是 python3? 对此,咪博士的回答是:果断 Python3 ! 可是,还有许多小白朋友仍然犹豫:那为什么还是 ...
- kaggle入门项目:Titanic存亡预测 (一)比赛简介
自从入了数据挖掘的坑,就在不停的看视频刷书,但是总觉得实在太过抽象,在结束了coursera上Andrew Ng 教授的机器学习课程还有刷完一整本集体智慧编程后更加迷茫了,所以需要一个实践项目来扎实之 ...
- 使用seaborn探索泰坦尼克号上乘客能否获救
titanic数据集是个著名的数据集.kaggle上的titanic乘客生还率预测比赛是一个很好的入门机器学习的比赛. 数据集下载可以去https://www.kaggle.com/c/titanic ...
随机推荐
- Dubbo 服务集群容错配置
Dubbo集群容错是靠配置cluster属性来做 支持改属性的标签为<dubbo:service>,<dubbo:referece>,<dubbo:consumer> ...
- WPF在XAML中实现持续动画的暂停、恢复、停止
1.动画通过EventTrigger监听按钮的FrameworkElement.Loaded事件,但控件载入时就进行动画, 持续动画通过<BeginStoryboard Name="y ...
- [转] Webpack-CommonsChunkPlugin
当前项目结构 项目结构 其中 Greeter.js 引用了 config.json main.js 和 second.js 都引用了 Greeter.js main.js 还引用了 onlyfor ...
- [转] JavaScript 之 ArrayBuffer
JS里的ArrayBuffer 还记得某个晚上在做 canvas 像素级操作,发现存储像素的数据格式并不是Array类型,而是ArrayBuffer,心想这是什么鬼?后来查了一些资料,发现自己这半年来 ...
- 【C#】使用OWIN创建Web API
OWIN的介绍 OWIN 的全称是 "Open Web Interface for .NET", OWIN 在 .NET Web 服务器和 .NET Web 应用之间定义了一套标准 ...
- Bootstrap富文本编辑器-bootstrap-wysiwyg
在进行英语试题的录入中,因为英语试题经常会有类似如下的试题: My friend watches dragon boat races at the Dragon Boat Festival.(对划线部 ...
- redcontrol for SL 中文化及样式选择
app.xaml.cs public partial class App: Application { public App() { //指定t ...
- zabbix监控Mysql中的QPS/TPS
今天我们来了解一下如何通过zabbix监控来监控我们msyql数据库中的TPS和QPS,提到这两个概念,我们先来了解究竟什么是QPS,TPS呢?它们是如何计算得到的呢?我们来看一下 QPS(Quest ...
- AtCoder Regular Contest 101 (ARC101) D - Median of Medians 二分答案 树状数组
原文链接https://www.cnblogs.com/zhouzhendong/p/ARC101D.html 题目传送门 - ARC101D 题意 给定一个序列 A . 定义一个序列 A 的中位数为 ...
- day 58 bootstrap -part1
我们的bootstrap主要使用都是官网里面的内容,官网里面的都整理得很完备,有需要的时候就直接去里面找即可, 关于这个bootstrap,我所理解的就是,我们前面所学的那些,从html开始一直到后面 ...