题目链接

题解:

对于上面和下面的式子进行分解质因数,然后看看上面的质因数个数减去下面的质因数个数能不能达到k的质因数的要求即可。

分解质因数的时候用对于阶乘分解质因数的常用方法:比如要求1999!中能分解出多少个5,那么就把1999不断的除以5,并且把得到的数相加即可。原因显然。

但是上面方法的复杂度是nnt,明显tle,考虑优化。发现当k固定之后,对于每个n和m是固定的,并且似乎是可以转移的。所以考虑预处理。

用c[i][j]表示\(C_i^j\)是不是符合要求。用g[i][j]表示当m为j,n从j到max满足条件的数量。f[i][j]表示n为1到i,m为1到j时满足条件的数量。

然后只要考虑出f[i][j]的转移即可,显然f[i][j]=f[i][j-1]+g[i][j]

然后只要O(1)查询即可,懒得现将询问读入再预处理,所以前面的预处理全都是到2000的。

代码:

#include<cstdio>
#include<iostream>
using namespace std;
const int N=2000+10;
int t,n,m,k,pre[N][10];
int sushu[10]={0,2,3,5,7,11,13,17,19};
int ksushu[10],kjs[10];
void fenk()
{
for(int i=1;i<=8;++i)
{
if(!k) break;
while(k%sushu[i]==0)
{
kjs[i]++;
k/=sushu[i];
}
} }
inline void work2(int x)
{
for(int i=1;i<=8;++i)
{
int xx=x;
while(xx)
{
xx/=sushu[i];
pre[x][i]+=xx;
}
}
return; }
int g[N][N],f[N][N],c[N][N];
inline int pd(int x,int y)
{
for(int i=1;i<=8;++i)
if(pre[x][i]-pre[y][i]-pre[x-y][i]<kjs[i]) return 0;
return 1;
}
inline int ps(int x)
{
if(x==2||x==3) return 1;
if(x%6!=5&&x%6!=1) return 0;
for(int i=5;i*i<=x;i+=6)
if(x%(i+2)==0||x%i==0) return 0;
return 1;
}
int main()
{
scanf("%d%d",&t,&k);
fenk();
for(int i=2;i<=2000;++i)
work2(i);
for(int i=1;i<=2000;++i)
for(int j=1;j<=i;++j)
if(pd(i,j))
c[i][j]=1;
for(int j=1;j<=2000;++j)
for(int i=j;i<=2000;++i)
g[i][j]=g[i-1][j]+c[i][j];
for(int i=1;i<=2000;++i)
for(int j=1;j<=i;++j)
f[i][j]=f[i][j-1]+g[i][j];
int x,y;
while(t--)
{ scanf("%d%d",&x,&y);
printf("%d\n",f[x][min(x,y)]);
}
return 0;
}

[luogu2822][组合数问题]的更多相关文章

  1. $Noip2016/Luogu2822$ 组合数问题

    $Luogu$ 看这题题解的时候看到一个好可爱的表情(●'◡'●)ノ♥ $Sol$ 首先注意到这题的模数是$k$.然而$k$并不一定是质数,所以不能用$C_n^m=\frac{n!}{m!(n-m)! ...

  2. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  3. 计算一维组合数的java实现

    背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: ...

  4. Noip2016提高组 组合数问题problem

    Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...

  5. C++单元测试 之 gtest -- 组合数计算.

    本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...

  6. NOIP2011多项式系数[快速幂|组合数|逆元]

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  7. AC日记——组合数问题 落谷 P2822 noip2016day2T1

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  8. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  9. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

随机推荐

  1. Ionic 2 中生命周期的命名改变及说明

    原文发表于我的技术博客 本文简要整理了在 Ionic 2 的版本中生命周期命名的改变,以及各个事件的解释. 原文发表于我的技术博客 在之前的课程中讲解了 Ionic 生命周期的命名以及使用,不过在 I ...

  2. TomCat 再次发布我的程序

    打包成.war的步骤就不说了,之后的配置和上一次的不一样. 在Tomcat的conf下的server.xml文件中,重新配置如下 <Service name="xfwweb" ...

  3. json模块 & pickle模块

    之前学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval就不管用了,所 ...

  4. 《移山之道》Reading Task

    老师布置的阅读任务虽然是附加的作业,但是对我来说是个很好的学习机会.软件工程主要是对工程的开发进行学习,毕竟在学校老师教了那么多的知识,我们课下做了那么多的练习并没有提高我们做一个工程的能力.一个项目 ...

  5. 【个人博客作业Week7】软件工程团队项目一轮迭代感想与反思

    (发布晚原因:发到团队博客了 一.关于银弹 在佛瑞德·布鲁克斯于1986年发布的<没有银弹:软件工程的本质性与附属性工作>这篇软件工程的经典论文中,作者向我们讲述了软件工程没有银弹这样的理 ...

  6. UML图中类之间的关系:依赖,泛化,关联,聚合,组合,实现(转)

    UML图中类之间的关系:依赖,泛化,关联,聚合,组合,实现   类与类图 1) 类(Class)封装了数据和行为,是面向对象的重要组成部分,它是具有相同属性.操作.关系的对象集合的总称. 2) 在系统 ...

  7. shell脚本--cut命令与awk简单使用

    cut:对内容进行列切割 -d 后面的是分割符,表示用什么符号来分割符来分割列,分隔符使用引号括起来: -f后面跟着要选择的字段列,从1开始,表示第一列,如果要多列,可以用逗号分隔 : -c参数后面跟 ...

  8. jetty 之 form too large | form too many keys 异常

    http://www.jsunw.com/?post=34&tdsourcetag=s_pctim_aiomsg https://wiki.eclipse.org/Jetty/Howto/Co ...

  9. [百家号]看完再也不会被坑!笔记本接口大揭秘:HDMI、DP、雷电

    看完再也不会被坑!笔记本接口大揭秘:HDMI.DP.雷电 https://baijiahao.baidu.com/s?id=1577309281431438678&wfr=spider& ...

  10. Android控件第7类——对话框

    1.AlertDialog AlertDialog用来生成对话框,功能十分强大. AlertDialog可以分成4个组成部分:标题栏上的图标,标题区,文本区,按钮区. 使用方法: 创建AlertDia ...