Python计算特征值与特征向量案例

例子1

import numpy as np
A = np.array([[3,-1],[-1,3]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[ 3 -1]
[-1 3]]
打印特征值a:
[4. 2.]
打印特征向量b:
[[ 0.70710678 0.70710678]
[-0.70710678 0.70710678]]

例子2

import numpy as np
A = np.array([[-1,1,0],[-4,3,0],[1,0,2]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[-1 1 0]
[-4 3 0]
[ 1 0 2]]
打印特征值a:
[2. 1. 1.]
打印特征向量b:
[[ 0. 0.40824829 0.40824829]
[ 0. 0.81649658 0.81649658]
[ 1. -0.40824829 -0.40824829]]

例子3

import numpy as np
A = np.array([[-2,1,1],[0,2,0],[-4,1,3]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[-2 1 1]
[ 0 2 0]
[-4 1 3]]
打印特征值a:
[-1. 2. 2.]
打印特征向量b:
[[-0.70710678 -0.24253563 0.30151134]
[ 0. 0. 0.90453403]
[-0.70710678 -0.9701425 0.30151134]]

特征值

知识点:【奇异矩阵】
  • 判断矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。
  • 看矩阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。
    1. 若|A|≠0可知矩阵A可逆,可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。 
    2. 若A为奇异矩阵,则AX=0有无穷解,AX=b有无穷解或者无解。
    3. 若A为非奇异矩阵,则AX=0有且只有唯一零解,AX=b有唯一解。

特征向量

总结:

特征值和特征向量的计算方法:

特征值与特征向量

特征值的性质:

特征向量的性质

 

例题1

 
import numpy as np
A = np.array([[1,2,2],[2,1,2],[2,2,1]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[1 2 2]
[2 1 2]
[2 2 1]]
打印特征值a:
[-1. 5. -1.]
打印特征向量b:
[[-0.81649658 0.57735027 0. ]
[ 0.40824829 0.57735027 -0.70710678]
[ 0.40824829 0.57735027 0.70710678]]

例题2

import numpy as np
A = np.array([[2,-3,1],[1,-2,1],[1,-3,2]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[ 2 -3 1]
[ 1 -2 1]
[ 1 -3 2]]
打印特征值a:
[2.09037533e-15+0.00000000e+00j 1.00000000e+00+5.87474805e-16j
1.00000000e+00-5.87474805e-16j]
打印特征向量b:
[[0.57735027+0.j 0.84946664+0.j 0.84946664-0.j ]
[0.57735027+0.j 0.34188085-0.11423045j 0.34188085+0.11423045j]
[0.57735027+0.j 0.17617591-0.34269135j 0.17617591+0.34269135j]]

例题3

import numpy as np
A = np.array([[2,-1,2],[5,-3,3],[-1,0,-2]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[ 2 -1 2]
[ 5 -3 3]
[-1 0 -2]]
打印特征值a:
[-0.99998465+0.00000000e+00j -1.00000768+1.32949166e-05j
-1.00000768-1.32949166e-05j]
打印特征向量b:
[[ 0.57735027+0.00000000e+00j 0.57735027+7.67588259e-06j
0.57735027-7.67588259e-06j]
[ 0.57735913+0.00000000e+00j 0.57734584+1.53518830e-05j
0.57734584-1.53518830e-05j]
[-0.57734141+0.00000000e+00j -0.5773547 +0.00000000e+00j
-0.5773547 -0.00000000e+00j]]
 
 
 
 

Python与矩阵论——特征值与特征向量的更多相关文章

  1. python计算平面的法向-利用协方差矩阵求解特征值和特征向量

    Obvious,最小特征值对应的特征向量为平面的法向 这个问题还有个关键是通过python求协方差矩阵的特征值和特征向量,np.linalg.eig()方法直接返回了特征值的向量和特征向量的矩阵 sc ...

  2. 利用python做矩阵的简单运算(行列式、特征值、特征向量等的求解)

    import numpy as np lis = np.mat([[1,2,3],[3,4,5],[4,5,6]]) print(np.linalg.inv(lis)) # 求矩阵的逆矩阵 [[-1. ...

  3. 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量

    [前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...

  4. 矩阵的特征值和特征向量的雅克比算法C/C++实现

    矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代 ...

  5. c语言计算矩阵特征值和特征向量-1(幂法)

    #include <stdio.h> #include <math.h> #include <stdlib.h> #define M 3 //方阵的行数 列数 #d ...

  6. (原)使用mkl计算特征值和特征向量

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5585271.html 参考文档:mkl官方文档 lapack_int LAPACKE_sgeev(in ...

  7. opencv学习之路(38)、Mat像素统计基础——均值,标准差,协方差;特征值,特征向量

    本文部分内容转自 https://www.cnblogs.com/chaosimple/p/3182157.html 一.统计学概念 二.为什么需要协方差 三.协方差矩阵 注:上述协方差矩阵还需要除以 ...

  8. eig()函数求特征值、特征向量、归一化

    在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有 5种:(1) E=eig(A):求矩阵A的全部特征值,构成向量E. 想求最大特征值用:max(eig(A))就好了 ...

  9. 特征值、特征向量与PCA算法

    一.复习几个矩阵的基本知识 1. 向量 1)既有大小又有方向的量成为向量,物理学中也被称为矢量,向量的坐标表示a=(2,3),意为a=2*i + 3*j,其中i,j分别是x,y轴的单位向量. 2)向量 ...

随机推荐

  1. 完整部署CentOS7.2+OpenStack+kvm 云平台环境(2)--云硬盘等后续配置

    继上一篇博客介绍了完整部署CentOS7.2+OpenStack+kvm 云平台环境(1)--基础环境搭建,本篇继续讲述后续部分的内容 1 虚拟机相关1.1 虚拟机位置介绍 openstack上创建的 ...

  2. 《linux内核设计与实现》第五章

    第五章 系统调用 一.与内核通信 系统调用在用户空间进程和硬件设备之间添加了一个中间层.作用: 为用户空间提供了一种硬件的抽象接口. 系统调用保证了系统的稳定和安全. 每个进程都运行在虚拟系统中,而在 ...

  3. Android WebView 文明踩坑之路

    情景一 webview 以头布局的形式添加到 RecyclerView 中,第一次进入页面,当页面中有 EditText 并且点击时,甚至是类似点赞更换图片.点击 WebView 任意区域,都会造成 ...

  4. PAT 甲级 1130 Infix Expression

    https://pintia.cn/problem-sets/994805342720868352/problems/994805347921805312 Given a syntax tree (b ...

  5. PAT 1036 跟奥巴马一起编程

    https://pintia.cn/problem-sets/994805260223102976/problems/994805285812551680 美国总统奥巴马不仅呼吁所有人都学习编程,甚至 ...

  6. RocketMQ事务消息实战

    我们以一个订单流转流程来举例,例如订单子系统创建订单,需要将订单数据下发到其他子系统(与第三方系统对接)这个场景,我们通常会将两个系统进行解耦,不直接使用服务调用的方式进行交互.其业务实现步骤通常为: ...

  7. 解决Ubuntu中vi命令的编辑模式下不能正常使用方向键和退格键的问题

    在Ubuntu中,进入vi命令的编辑模式,发现按方向键不能移动光标,而是会输出ABCD,以及退格键也不能正常删除字符.这是由于Ubuntu预装的是vim-tiny,而我们需要使用vim-full,解决 ...

  8. GlusterFS 增删节点及改变复制份数

    一.增加节点 1.需要主机添加到主机池中 gluster peer  probe server3 gluster peer  probe server4 2.查看状态 3.添加节点并复制2份(增加复制 ...

  9. python学习笔记九——序列

    4.4 序列 序列是具有索引和切片能力的集合.元组.列表和字符串具有通过索引访问某个具体的值,或通过切片返回一段切片的能力,因此元组.列表和字符串都属于序列.序列索引功能演示: tuple=(&quo ...

  10. codeforces624A

    Save Luke CodeForces - 624A Luke Skywalker got locked up in a rubbish shredder between two presses. ...