Python计算特征值与特征向量案例

例子1

import numpy as np
A = np.array([[3,-1],[-1,3]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[ 3 -1]
[-1 3]]
打印特征值a:
[4. 2.]
打印特征向量b:
[[ 0.70710678 0.70710678]
[-0.70710678 0.70710678]]

例子2

import numpy as np
A = np.array([[-1,1,0],[-4,3,0],[1,0,2]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[-1 1 0]
[-4 3 0]
[ 1 0 2]]
打印特征值a:
[2. 1. 1.]
打印特征向量b:
[[ 0. 0.40824829 0.40824829]
[ 0. 0.81649658 0.81649658]
[ 1. -0.40824829 -0.40824829]]

例子3

import numpy as np
A = np.array([[-2,1,1],[0,2,0],[-4,1,3]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[-2 1 1]
[ 0 2 0]
[-4 1 3]]
打印特征值a:
[-1. 2. 2.]
打印特征向量b:
[[-0.70710678 -0.24253563 0.30151134]
[ 0. 0. 0.90453403]
[-0.70710678 -0.9701425 0.30151134]]

特征值

知识点:【奇异矩阵】
  • 判断矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。
  • 看矩阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。
    1. 若|A|≠0可知矩阵A可逆,可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。 
    2. 若A为奇异矩阵,则AX=0有无穷解,AX=b有无穷解或者无解。
    3. 若A为非奇异矩阵,则AX=0有且只有唯一零解,AX=b有唯一解。

特征向量

总结:

特征值和特征向量的计算方法:

特征值与特征向量

特征值的性质:

特征向量的性质

 

例题1

 
import numpy as np
A = np.array([[1,2,2],[2,1,2],[2,2,1]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[1 2 2]
[2 1 2]
[2 2 1]]
打印特征值a:
[-1. 5. -1.]
打印特征向量b:
[[-0.81649658 0.57735027 0. ]
[ 0.40824829 0.57735027 -0.70710678]
[ 0.40824829 0.57735027 0.70710678]]

例题2

import numpy as np
A = np.array([[2,-3,1],[1,-2,1],[1,-3,2]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[ 2 -3 1]
[ 1 -2 1]
[ 1 -3 2]]
打印特征值a:
[2.09037533e-15+0.00000000e+00j 1.00000000e+00+5.87474805e-16j
1.00000000e+00-5.87474805e-16j]
打印特征向量b:
[[0.57735027+0.j 0.84946664+0.j 0.84946664-0.j ]
[0.57735027+0.j 0.34188085-0.11423045j 0.34188085+0.11423045j]
[0.57735027+0.j 0.17617591-0.34269135j 0.17617591+0.34269135j]]

例题3

import numpy as np
A = np.array([[2,-1,2],[5,-3,3],[-1,0,-2]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[ 2 -1 2]
[ 5 -3 3]
[-1 0 -2]]
打印特征值a:
[-0.99998465+0.00000000e+00j -1.00000768+1.32949166e-05j
-1.00000768-1.32949166e-05j]
打印特征向量b:
[[ 0.57735027+0.00000000e+00j 0.57735027+7.67588259e-06j
0.57735027-7.67588259e-06j]
[ 0.57735913+0.00000000e+00j 0.57734584+1.53518830e-05j
0.57734584-1.53518830e-05j]
[-0.57734141+0.00000000e+00j -0.5773547 +0.00000000e+00j
-0.5773547 -0.00000000e+00j]]
 
 
 
 

Python与矩阵论——特征值与特征向量的更多相关文章

  1. python计算平面的法向-利用协方差矩阵求解特征值和特征向量

    Obvious,最小特征值对应的特征向量为平面的法向 这个问题还有个关键是通过python求协方差矩阵的特征值和特征向量,np.linalg.eig()方法直接返回了特征值的向量和特征向量的矩阵 sc ...

  2. 利用python做矩阵的简单运算(行列式、特征值、特征向量等的求解)

    import numpy as np lis = np.mat([[1,2,3],[3,4,5],[4,5,6]]) print(np.linalg.inv(lis)) # 求矩阵的逆矩阵 [[-1. ...

  3. 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量

    [前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...

  4. 矩阵的特征值和特征向量的雅克比算法C/C++实现

    矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代 ...

  5. c语言计算矩阵特征值和特征向量-1(幂法)

    #include <stdio.h> #include <math.h> #include <stdlib.h> #define M 3 //方阵的行数 列数 #d ...

  6. (原)使用mkl计算特征值和特征向量

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5585271.html 参考文档:mkl官方文档 lapack_int LAPACKE_sgeev(in ...

  7. opencv学习之路(38)、Mat像素统计基础——均值,标准差,协方差;特征值,特征向量

    本文部分内容转自 https://www.cnblogs.com/chaosimple/p/3182157.html 一.统计学概念 二.为什么需要协方差 三.协方差矩阵 注:上述协方差矩阵还需要除以 ...

  8. eig()函数求特征值、特征向量、归一化

    在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有 5种:(1) E=eig(A):求矩阵A的全部特征值,构成向量E. 想求最大特征值用:max(eig(A))就好了 ...

  9. 特征值、特征向量与PCA算法

    一.复习几个矩阵的基本知识 1. 向量 1)既有大小又有方向的量成为向量,物理学中也被称为矢量,向量的坐标表示a=(2,3),意为a=2*i + 3*j,其中i,j分别是x,y轴的单位向量. 2)向量 ...

随机推荐

  1. 太白教你学python---博客分类目录

    太白非技术类随笔(持续更新中...猛击这里!!!) python基础 python基础一 pytcharm安装详细教程 python基础二 python基础数据类型 Python最详细,最深入的代码块 ...

  2. C_数据结构_递归实现累加

    # include <stdio.h> long sum(int n) { //用递归实现: ) ; else ) + n; /* 用for循环实现: long s = 0; int i; ...

  3. 1013 B. And

    链接 [http://codeforces.com/contest/1013/problem/B] 题意 给你一个n和x,再给n个数,有一种操作用x&a[i]取代,a[i],问使其中至少两个数 ...

  4. Beta版测试报告

    Beta版测试报告 测试中发现的Bug: Version 2.0 Bug List 1. 在动态监测界面,若随便点击“开始”.“关闭”.“结束”.红叉,会出现不定式崩溃现象. 2. 处理空数据时可能会 ...

  5. 2-Twenty Fourth Scrum Meeting-20151230

    前言 因为服务器关闭,我们的开发项目也遭遇停滞一个星期.与网站开发负责人员协商之后,29号开放服务器.我们的项目也能够继续下去.比规定的开发时间(截止为2015/12/29)推迟. 事项安排 1.开发 ...

  6. Python学习笔记 -- 第一章

    本笔记参考廖雪峰的Python教程 简介 Python是一种计算机高级程序设计语言. 用Python可以做什么? 可以做日常任务,比如自动备份你的MP3:可以做网站,很多著名的网站包括YouTube就 ...

  7. 实战框架ABP

    abp及实战框架概述 接触abp也快一年了,有过大半年的abp项目开发经验,目前项目中所用的abp框架版本为0.10.3,最新的abp框架已经到了1.4,并且支持了asp.net core.关于abp ...

  8. Maven的课堂笔记3

    8 仓库管理 仓库可以分为三种:1.本地仓库(本机).2.私服(公司局域网内的maven服务器).3.中央仓库(互联上,例如 struts2官网,或者hibernate官网) 可以根据maven坐标定 ...

  9. JavaScript 作用域链与闭包

    作用域链 在某个作用域访问某个变量或者函数时,会首先在自己的局部环境作用域中搜寻变量或者函数,如果本地局部环境作用域中有该变量或者函数,则就直接使用找到的这个变量值或者函数:如果本地局部环境作用域中没 ...

  10. [转帖]Linux的进程线程及调度

    Linux的进程线程及调度 本文为作者原创,转载请注明出处:https://www.cnblogs.com/leisure_chn/p/10393707.html 本文为宋宝华<Linux的进程 ...