【ML入门系列】(二)分类与回归
前言
在机器学习中,“分类”和“回归”这两个词经常听说,但很多时候我们却混为一谈。本文主要从应用场景、训练算法等几个方面来叙述两者的区别。
本质区别
分类和回归的区别在于输出变量的类型。分类的输出是离散的,回归的输出是连续的。
定量输出称为回归,或者说是连续变量预测; 定性输出称为分类,或者说是离散变量预测。
若我们欲预测的是离散值,例如"好瓜""坏瓜",此类学习任务称为 "分类"。
若欲预测的是连续值,例如西瓜的成熟度0.95 ,0.37,此类学习任务称为"回归"。《机器学习》周志华著
分类就是想办法让一堆数据站队,找出最符合其自身特征的群体。
例:有群体y=x和y=-x,数据集(1,1) (-2,2) (3,-3) (-4,-4)... (n,n),(1,1),(-4,-4)就符合群体y=x,(-2,2) (3,-3)就符合群体y=-x。
回归就是数学意义上的找出一个函数,让某些数据尽量符合这个函数的特征。例如线性回归(Linear Regression,LR)。
例:(1,1) (2,2) (3,3) ... (n,n)这些数据回归后的结果就是函数 y = x。
举例说明:
- 预测明天的气温是多少度,这是一个回归任务;
- 预测明天是阴、晴还是雨,就是一个分类任务。
应用场景
分类问题
分类问题是用于将事物打上一个标签,通常结果为离散值。例如判断一幅图片上的动物是一只猫还是一只狗,分类通常是建立在回归之上,分类的最后一层通常要使用softmax函数进行判断其所属类别。
分类并没有逼近的概念,最终正确结果只有一个,错误的就是错误的,不会有相近的概念。最常见的分类方法是逻辑回归,或者叫逻辑分类。
回归问题
回归问题通常是用来预测一个值,如预测房价、未来的天气情况等等,例如一个产品的实际价格为500元,通过回归分析预测值为499元,我们认为这是一个比较好的回归分析。
一个比较常见的回归算法是线性回归算法(LR)。另外,回归分析用在神经网络上,其最上层是不需要加上softmax函数的,而是直接对前一层累加即可。回归是对真实值的一种逼近预测。
总结
解决的问题类型
分类问题是从不同类型的数据中学习到这些数据间的边界,比如通过鱼的体长、重量、鱼鳞色泽等维度来分类鲶鱼和鲤鱼,这是一个定性问题。
回归问题则是从同一类型的数据中学习到这种数据中不同维度间的规律,去拟合真实规律,比如通过数据学习到面积、房间数、房价几个维度的关系,用于根据面积和房间数预测房价,这是一个定量问题;
【ML入门系列】(二)分类与回归的更多相关文章
- Maven入门系列(二)--设置中央仓库的方法
原文地址:http://www.codeweblog.com/maven入门系列-二-设置中央仓库的方法/ Maven仓库放在我的文档里好吗?当然不好,重装一次电脑,意味着一切jar都要重新下载和发布 ...
- mybatis入门系列二之输入与输出参数
mybatis入门系列二之详解输入与输出参数 基础知识 mybatis规定mapp.xml中每一个SQL语句形式上只能有一个@parameterType和一个@resultType 1. 返回 ...
- C语言高速入门系列(二)
C语言高速入门系列(二) -----转载请注明出处coder-pig 本节引言: 在前面一节中我们对C语言进行了初步的了解,学会了使用IDE进行代码的编写,编译执行! 在这一节中我们会对C语言的基本的 ...
- C# 互操作性入门系列(二):使用平台调用调用Win32 函数
好文章搬用工模式启动ing ..... { 文章中已经包含了原文链接 就不再次粘贴了 言明 改文章是一个系列,但只收录了2篇,原因是 够用了 } --------------------------- ...
- [转]C# 互操作性入门系列(二):使用平台调用调用Win32 函数
传送门 C#互操作系列文章: C# 互操作性入门系列(一):C#中互操作性介绍 C# 互操作性入门系列(二):使用平台调用调用Win32 函数 C# 互操作性入门系列(三):平台调用中的数据封送处理 ...
- 二分类Logistic回归模型
Logistic回归属于概率型的非线性回归,分为二分类和多分类的回归模型.这里只讲二分类. 对于二分类的Logistic回归,因变量y只有“是.否”两个取值,记为1和0.这种值为0/1的二值品质型变量 ...
- ActiveMQ入门系列二:入门代码实例(点对点模式)
在上一篇<ActiveMQ入门系列一:认识并安装ActiveMQ(Windows下)>中,大致介绍了ActiveMQ和一些概念,并下载.安装.启动他,还访问了他的控制台页面. 这篇,就用代 ...
- SPSS数据分析—二分类Logistic回归模型
对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能 ...
- spring cloud 入门系列二:使用Eureka 进行服务治理
服务治理可以说是微服务架构中最为核心和基础的模块,它主要用来实现各个微服务实例的自动化注册和发现. Spring Cloud Eureka是Spring Cloud Netflix 微服务套件的一部分 ...
随机推荐
- Python3之弹性力学——应力张量2
问题 已知某应力张量的分量为 \[ \sigma_{11}=3,\quad\sigma_{12} = \sigma_{13} = 1, \quad \sigma_{22} = \sigma_{33} ...
- [蓝点zigBee] CC2530 实用教程总览
Zstack 单个模块实验(无数据通信) 1Zstack精简,增加串口数据 Zstack 里面工程较多,整体代码量很大,若入门只需要先之关注其中的一个工程,在这个工程里添添补补逐步学习. 这一节主要是 ...
- 潭州课堂25班:Ph201805201 django 项目 第四十课 后台 文章发布,更新实现,热门新闻管理,轮播图管理(课堂笔记)
把图片上传到 七牛云,必须经过后台的许可, 在虚拟机中安装七牛云所需模块pip install qiniu # 创建utils/secrets/qiniu_secret_info.py文件 # 从七牛 ...
- 20172327 2018-2019-1 《第一行代码Android》第二章学习总结
学号 2017-2018-2 <第一行代码Android>第二章学习总结 教材学习内容总结 - 活动是什么: 活动(Activity)是最容易吸引用户的地方,它是一种可以包含用户界面的组件 ...
- BZOJ5100 : [POI2018]Plan metra
若$1$到$n$之间没有其它点,则$1$到$n$的距离为任意一点到它们距离的差值,按照距离关系判断每个点是挂在$1$上还是挂在$n$上即可. 否则$1$到$n$的距离只可能为任意一点到它们距离和的最小 ...
- 理解Hadoop脚本hadoop-2.5.0/bin/hadoop
1 #!/usr/bin/env bash 此处为什么不是 #!/bin/bash ? 考虑到程序的可移植性,env的作用就是为了找到正确的脚本解释器(这里就是bash),在不同的Linux ...
- yii2 数据库和ActiveRecord
Yii2数据库和 ActiveRecord 类 1.在 common/config/main-local.php 里面配置数据账号和密码. 2.ActiveRecord(活动记录,简称AR类),提供了 ...
- day4函数文件操作
一.高效读取文件 1.使用with打开文件,程序运行完后会自动关闭打开的文件 2.修改文件,将文件中的123替换为a(简单粗暴方式) 3.打开两个文件,修改后将旧文件删除,将新文件名字改成旧文件的名称 ...
- Java第二课 项目的导入和导出
Java项目的导入和导出 项目的导入和导出1)导入 右击myeclipse或eclipse的左侧有项目那一栏空白部分或者是File--Import,然后选择Import--General--双击Exi ...
- RS485 VS 20mA 电流环
RS485采用差分信号负逻辑,+2V-+6V表示“0”,- 6V-- 2V表示“1”.RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种 ...