题意

\(n(1 \le 1000000)\)个点的有根树,\(1\)号点为根,\(q(1 \le 1000000)\)次询问,每次给一个\(k\),每一次可以选择\(k\)个未访问的点,且父亲是访问过的,要求最少次数访问完所有的点。

分析

神题不会做。

题解

得到一个式子\(ans=max(i+ \left \lceil \frac{s[i]}{k} \right \rceil), 0 \le i \le maxh\),其中\(maxh\)是最大深度,\(s[i]\)是深度大于\(i\)的点的数量。证明如下:

定义关键层\(i\)表示拿了\(i\)次后、前\(i\)层已经拿完,以后每一次都可以拿\(k\)个(最后一次除外)。我们需要证明:1、存在关键层。2、关键层的解是最小解。

首先我们按照下面两个规则查询:

  1. 如果当前层\(i\)的结点不够\(k\),则查询完,而且如果之前有\(j < i\)层的点没查询,则查询完。
  2. 如果足够了\(k\),则在保证最终能在第\(maxh\)次遍历到第\(maxh\)层的情况下,随便选\(k\)个。

那么显然在最后一个执行1操作而且那层\(i\)不存在\(j < i\)层的点没查询的\(i\)就是关键层。由于这样的1操作至少有一个(即第1层肯定是执行的是这样的1操作),所以关键层肯定存在,而且只有一个。

至于关键层的解是否是最小解,感觉很显然,然而不会严格证明。

至于取max,不会严格证明。

最后原题可以转化为\(ans=\left \lceil max(i+\frac{s[i]}{k}) \right \rceil\),所以按照\(i+\frac{s[i]}{k}\)来斜率优化就行辣。

#include <bits/stdc++.h>
using namespace std;
inline int getint() {
int x=0;
char c=getchar();
for(; c<'0'||c>'9'; c=getchar());
for(; c>='0'&&c<='9'; x=x*10+c-'0', c=getchar());
return x;
}
typedef long long ll;
const int N=1000005;
int a[N], d[N], q[N], c[N], ihead[N], cnt;
struct E {
int next, to;
}e[N];
void add(int x, int y) {
e[++cnt]=(E){ihead[x], y}; ihead[x]=cnt;
}
void dfs(int x) {
for(int i=ihead[x]; i; i=e[i].next) {
d[e[i].to]=d[x]+1;
dfs(e[i].to);
}
}
inline bool ok1(int i, int j, int k) {
return (ll)(c[j]-c[i])*(k-i)>(ll)(c[k]-c[i])*(j-i);
}
inline bool ok2(int b, int j, int k) {
return (ll)b*(j-k)>c[k]-c[j];
}
int main() {
int n=getint(), Q=getint();
for(int i=0; i<Q; ++i) {
a[i]=getint();
}
d[0]=1;
int mx=1;
for(int i=1; i<n; ++i) {
add(getint()-1, i);
}
dfs(0);
for(int i=0; i<n; ++i) {
++c[d[i]-1];
mx=max(mx, d[i]);
}
for(int i=mx; i; --i) {
c[i]+=c[i+1];
}
int *fr=q+1, *ta=q;
for(int i=1; i<=mx; ++i) {
for(; fr<ta && ok1(*(ta-1), i, *ta); --ta);
*++ta=i;
}
for(int i=1; i<=n; ++i) {
for(; fr<ta && ok2(i, *(fr+1), *fr); ++fr);
d[i]=*fr+(c[*fr]+i-1)/i;
}
for(int i=0; i<Q; ++i) {
printf("%d%c", a[i]>n?mx:d[a[i]], " \n"[i==Q-1]);
}
return 0;
}

【BZOJ】3835: [Poi2014]Supercomputer的更多相关文章

  1. 【BZOJ】3524: [Poi2014]Couriers

    [算法]主席树 [题解]例题,记录和,数字出现超过一半就递归查找. 主席树见[算法]数据结构 #include<cstdio> #include<algorithm> #inc ...

  2. 【BZOJ】3832: [Poi2014]Rally

    题意 \(n(2 \le n \le 500000)\)个点\(m(1 \le m \le 1000000)\)条边的有向无环图,找到一个点,使得删掉这个点后剩余图中的最长路径最短. 分析 神题不会做 ...

  3. 【BZOJ】3526: [Poi2014]Card

    题意 \(n(n \le 200000)\)张卡片,正反有两个数\(a[i], b[i]\).\(m(m \le 1000000)\)次操作,每次交换\(c[i].d[i]\)位置上的卡片.每一次操作 ...

  4. 【BZOJ】3523: [Poi2014]Bricks

    题意 \(n(n \le 1000000)\)个物品,颜色分别为\(a[i]\),现在要求排在一排使得相邻两个砖块的颜色不同,且限定第一个砖块和最后一个砖块的颜色,输出一个合法解否则输出-1. 分析 ...

  5. 【BZOJ】3521: [Poi2014]Salad Bar

    题意 长度为\(n(1 \le n \le 1000000)\)的\(01\)字符串.找一个最长的连续子串\(S\),使得不管是从左往右还是从右往左取,都保证每时每刻已取出的\(1\)的个数不小于\( ...

  6. 【BZOJ】3834: [Poi2014]Solar Panels

    http://www.lydsy.com/JudgeOnline/problem.php?id=3834 题意:求$max\{(i,j)\}, smin<=i<=smax, wmin< ...

  7. 【BZOJ】3524 [POI2014] Couriers(主席树)

    题目 传送门:QWQ 传送到洛谷QWQ 分析 把求区间第k大的改一改就ok了. 代码 #include <bits/stdc++.h> using namespace std; ; ], ...

  8. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  9. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

随机推荐

  1. Gdb调试多进程程序

    Gdb调试多进程程序 程序经常使用fork/exec创建多进程程序.多进程程序有自己独立的地址空间,这是多进程调试首要注意的地方.Gdb功能强大,对调试多线程提供很多支持. 方法1:调试多进程最土的办 ...

  2. codevs1316 文化之旅

    题目描述 Description 有一位使者要游历各国,他每到一个国家,都能学到一种文化,但他不愿意学习任何一种文化超过一次(即如果他学习了某种文化,则他就不能到达其他有这种文化的国家).不同的国家可 ...

  3. javascript创建对象的一些方式

    通过创建一个Object实例 var person = new Object(); person.name = "zhouquan"; person.age = 21; perso ...

  4. Shell标准输出、标准错误 >/dev/null 2>&1

    Shell中可能经常能看到:>/dev/null  2>&1 eg:sudo kill -9 `ps -elf |grep -v grep|grep $1|awk '{print ...

  5. 第2月第24天 coretext 行高

    1.NSMutableAttributedString 行高 NSMutableAttributedString *attributedString = [[NSMutableAttributedSt ...

  6. ASM,C数据类型

    汇编: db  单字节 = 8bit dw 单字    = 16bit dd  双字   = 32bit C数据类型: char                字节 8bit unsigned cha ...

  7. TCP/IP三次握手和HTTP过程

    1.TCP连接 手机能够使用联网功能是因为手机底层实现了TCP/IP协议,可以使手机终端通过无线网络建立TCP连接.TCP协议可以对上层网络提供接口,使上层网络数据的传输建立在"无差别&qu ...

  8. mapReduce编程之Recommender System

    1 协同过滤算法 协同过滤算法是现在推荐系统的一种常用算法.分为user-CF和item-CF. 本文的电影推荐系统使用的是item-CF,主要是由于用户数远远大于电影数,构建矩阵的代价更小:另外,电 ...

  9. C# 文件/文件夹重命名

    C# 重命名的方法是MoveTo() 官方文档地址 (https://msdn.microsoft.com/zh-cn/library/system.io.fileinfo.moveto%28VS.8 ...

  10. Power of Three

    Given an integer, write a function to determine if it is a power of three. Follow up:Could you do it ...