题意

\(n(1 \le 1000000)\)个点的有根树,\(1\)号点为根,\(q(1 \le 1000000)\)次询问,每次给一个\(k\),每一次可以选择\(k\)个未访问的点,且父亲是访问过的,要求最少次数访问完所有的点。

分析

神题不会做。

题解

得到一个式子\(ans=max(i+ \left \lceil \frac{s[i]}{k} \right \rceil), 0 \le i \le maxh\),其中\(maxh\)是最大深度,\(s[i]\)是深度大于\(i\)的点的数量。证明如下:

定义关键层\(i\)表示拿了\(i\)次后、前\(i\)层已经拿完,以后每一次都可以拿\(k\)个(最后一次除外)。我们需要证明:1、存在关键层。2、关键层的解是最小解。

首先我们按照下面两个规则查询:

  1. 如果当前层\(i\)的结点不够\(k\),则查询完,而且如果之前有\(j < i\)层的点没查询,则查询完。
  2. 如果足够了\(k\),则在保证最终能在第\(maxh\)次遍历到第\(maxh\)层的情况下,随便选\(k\)个。

那么显然在最后一个执行1操作而且那层\(i\)不存在\(j < i\)层的点没查询的\(i\)就是关键层。由于这样的1操作至少有一个(即第1层肯定是执行的是这样的1操作),所以关键层肯定存在,而且只有一个。

至于关键层的解是否是最小解,感觉很显然,然而不会严格证明。

至于取max,不会严格证明。

最后原题可以转化为\(ans=\left \lceil max(i+\frac{s[i]}{k}) \right \rceil\),所以按照\(i+\frac{s[i]}{k}\)来斜率优化就行辣。

#include <bits/stdc++.h>
using namespace std;
inline int getint() {
int x=0;
char c=getchar();
for(; c<'0'||c>'9'; c=getchar());
for(; c>='0'&&c<='9'; x=x*10+c-'0', c=getchar());
return x;
}
typedef long long ll;
const int N=1000005;
int a[N], d[N], q[N], c[N], ihead[N], cnt;
struct E {
int next, to;
}e[N];
void add(int x, int y) {
e[++cnt]=(E){ihead[x], y}; ihead[x]=cnt;
}
void dfs(int x) {
for(int i=ihead[x]; i; i=e[i].next) {
d[e[i].to]=d[x]+1;
dfs(e[i].to);
}
}
inline bool ok1(int i, int j, int k) {
return (ll)(c[j]-c[i])*(k-i)>(ll)(c[k]-c[i])*(j-i);
}
inline bool ok2(int b, int j, int k) {
return (ll)b*(j-k)>c[k]-c[j];
}
int main() {
int n=getint(), Q=getint();
for(int i=0; i<Q; ++i) {
a[i]=getint();
}
d[0]=1;
int mx=1;
for(int i=1; i<n; ++i) {
add(getint()-1, i);
}
dfs(0);
for(int i=0; i<n; ++i) {
++c[d[i]-1];
mx=max(mx, d[i]);
}
for(int i=mx; i; --i) {
c[i]+=c[i+1];
}
int *fr=q+1, *ta=q;
for(int i=1; i<=mx; ++i) {
for(; fr<ta && ok1(*(ta-1), i, *ta); --ta);
*++ta=i;
}
for(int i=1; i<=n; ++i) {
for(; fr<ta && ok2(i, *(fr+1), *fr); ++fr);
d[i]=*fr+(c[*fr]+i-1)/i;
}
for(int i=0; i<Q; ++i) {
printf("%d%c", a[i]>n?mx:d[a[i]], " \n"[i==Q-1]);
}
return 0;
}

【BZOJ】3835: [Poi2014]Supercomputer的更多相关文章

  1. 【BZOJ】3524: [Poi2014]Couriers

    [算法]主席树 [题解]例题,记录和,数字出现超过一半就递归查找. 主席树见[算法]数据结构 #include<cstdio> #include<algorithm> #inc ...

  2. 【BZOJ】3832: [Poi2014]Rally

    题意 \(n(2 \le n \le 500000)\)个点\(m(1 \le m \le 1000000)\)条边的有向无环图,找到一个点,使得删掉这个点后剩余图中的最长路径最短. 分析 神题不会做 ...

  3. 【BZOJ】3526: [Poi2014]Card

    题意 \(n(n \le 200000)\)张卡片,正反有两个数\(a[i], b[i]\).\(m(m \le 1000000)\)次操作,每次交换\(c[i].d[i]\)位置上的卡片.每一次操作 ...

  4. 【BZOJ】3523: [Poi2014]Bricks

    题意 \(n(n \le 1000000)\)个物品,颜色分别为\(a[i]\),现在要求排在一排使得相邻两个砖块的颜色不同,且限定第一个砖块和最后一个砖块的颜色,输出一个合法解否则输出-1. 分析 ...

  5. 【BZOJ】3521: [Poi2014]Salad Bar

    题意 长度为\(n(1 \le n \le 1000000)\)的\(01\)字符串.找一个最长的连续子串\(S\),使得不管是从左往右还是从右往左取,都保证每时每刻已取出的\(1\)的个数不小于\( ...

  6. 【BZOJ】3834: [Poi2014]Solar Panels

    http://www.lydsy.com/JudgeOnline/problem.php?id=3834 题意:求$max\{(i,j)\}, smin<=i<=smax, wmin< ...

  7. 【BZOJ】3524 [POI2014] Couriers(主席树)

    题目 传送门:QWQ 传送到洛谷QWQ 分析 把求区间第k大的改一改就ok了. 代码 #include <bits/stdc++.h> using namespace std; ; ], ...

  8. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  9. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

随机推荐

  1. javascript数据结构与算法--基本排序算法分析

    javascript中的基本排序算法 对计算机中存储的数据执行的两种最常见操作是排序和检索,排序和检索算法对于前端开发尤其重要,对此我会对这两种算法做深入的研究,而不会和书上一样只是会贴代码而已,下面 ...

  2. MySQL数据库命名及设计规范

    1.设计原则 1) 标准化和规范化 数据的标准化有助于消除数据库中的数据冗余.标准化有好几种形式,但 Third Normal Form(3NF)通常被认为在性能.扩展性和数据完整性方面达到了最好平衡 ...

  3. (二)SQL Server分区创建过程

    虽然分区有很多好处(一)SQL Server分区详解Partition,却不能随意使用:且不说分区管理的繁琐,只是跨分区带来的负面影响就需要我们好好分析是否有必要使用分区.一般分区创建的业务特点:用于 ...

  4. PHP通过ini_set()来设置显示错误信息和执行时间

    PHP的 ini_set函数是设置选项中的值,在执行函数后生效,脚本结束的时候,这个设置也失效.不是所有的选项都能被改函数设置的.具体那些值能够设置,可以查看手册中的列表. 就是能够设置php.ini ...

  5. MVC项目使用easyui的filebox控件上传文件

    开发环境:WIN10+IE11,浏览器请使用IE10或以上版本 开发技术框架MVC4+JQuery Easyui+knockoutjs 效果为弹出小窗体,如下图 1.前端cshtml文件代码(只包含文 ...

  6. word20161215

    name / 名称 name mapping / 名称映射 name resolution / 名称解析 name server (NS) resource record / 名称服务器资源记录 na ...

  7. VBA之文件筛选

    在工作中,经常会碰到从一堆腐朽的source中按照一个列表去筛选出来现在还要用的source文件. 这个如果用vba来实现的话,会节省大量的时间,而且不会出错. 前提说明: 将想要复制的文件名列表放在 ...

  8. 28. 字符串的排列之第1篇[StringPermutation]

    [题目] 输入一个字符串,打印出该字符串中字符的所有排列.例如输入字符串abc,则输出由字符a.b.c所能排列出来的所有字符串abc.acb.bac.bca.cab和cba. [分析] 这是一道很好的 ...

  9. 【学习笔记】ionic 学习之环境搭建

    初学ionic ,后面会把学习的点滴和踩到坑全部记录下来 1.环境 安装node.js 官网地址:https://nodejs.org/en/ 下载安装包安装.自己记住自己的安装路径哦 安装完成后我们 ...

  10. 一个漂亮的上传按钮input[type=file]

    ;;} <div class="input-group xj-file xj-panel-top"> <span class="input-group- ...