CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)
题目
Source
http://vjudge.net/problem/142058
Description
Given N integers A1, A2, …. AN, Dexter wants to know how many ways he can choose three numbers such that they are three consecutive terms of an arithmetic progression.
Meaning that, how many triplets (i, j, k) are there such that 1 ≤ i < j < k ≤ N and Aj - Ai = Ak - Aj.
So the triplets (2, 5, 8), (10, 8, 6), (3, 3, 3) are valid as they are three consecutive terms of an arithmetic
progression. But the triplets (2, 5, 7), (10, 6, 8) are not.
Input
First line of the input contains an integer N (3 ≤ N ≤ 100000). Then the following line contains N space separated integers A1, A2, …, AN and they have values between 1 and 30000 (inclusive).
Output
Output the number of ways to choose a triplet such that they are three consecutive terms of an arithmetic progression.
Sample Input
10
3 5 3 6 3 4 10 4 5 2
Sample Output
9
分析
题目大概说给一个长N的序列A,问有多少个三元组<i,j,k>满足i<j<k且Ai+Ak=2Aj。
i<j<k这个关系不好搞,正解好像是分块:
- 把序列分解成若干块,每一块长度大约为B。分三种情况考虑:
- 对于三个都在同一块的:枚举各个块,然后通过枚举i和k并更新记录j的信息求出对数。时间复杂度$O(N/B\times B\times B)=O(NB)$。
- 对于只有两个在同一块的:枚举各个块,并更新记录前面所有块和后面所有块的信息,然后枚举块内的两个数,另一个数可能在块前也可能在块后,这样求出对数。时间复杂度$O(N/B\times B\times B)=O(NB)$。
- 对于三个数都在不同块的:枚举各个块,并更新记录前面所有块和后面所有块的信息,然后构造多项式用FFT求出前后两边组合成各个和的方案数,通过枚举块内的j即可求出对数。时间复杂度$O(N/B\times 65535\times 16+N/B\times B)$
- 然后就是B大小的设定,我设定的是$5\sqrt N$。
- 最后我连枚举都不会枚举。。还有有个地方只考虑是否大于0,没考虑是否小于等于30000,数组越界,WA了好久。。
代码
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 66666
const double PI=acos(-1.0); struct Complex{
double real,imag;
Complex(double _real,double _imag):real(_real),imag(_imag){}
Complex(){}
Complex operator+(const Complex &cp) const{
return Complex(real+cp.real,imag+cp.imag);
}
Complex operator-(const Complex &cp) const{
return Complex(real-cp.real,imag-cp.imag);
}
Complex operator*(const Complex &cp) const{
return Complex(real*cp.real-imag*cp.imag,real*cp.imag+cp.real*imag);
}
void setValue(double _real=0,double _imag=0){
real=_real; imag=_imag;
}
}; int len;
Complex wn[MAXN],wn_anti[MAXN]; void FFT(Complex y[],int op){
for(int i=1,j=len>>1,k; i<len-1; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>1;
while(j>=k){
j-=k;
k>>=1;
}
if(j<k) j+=k;
}
for(int h=2; h<=len; h<<=1){
Complex Wn=(op==1?wn[h]:wn_anti[h]);
for(int i=0; i<len; i+=h){
Complex W(1,0);
for(int j=i; j<i+(h>>1); ++j){
Complex u=y[j],t=W*y[j+(h>>1)];
y[j]=u+t;
y[j+(h>>1)]=u-t;
W=W*Wn;
}
}
}
if(op==-1){
for(int i=0; i<len; ++i) y[i].real/=len;
}
}
void Convolution(Complex A[],Complex B[],int n){
for(len=1; len<(n<<1); len<<=1);
for(int i=n; i<len; ++i){
A[i].setValue();
B[i].setValue();
} FFT(A,1); FFT(B,1);
for(int i=0; i<len; ++i){
A[i]=A[i]*B[i];
}
FFT(A,-1);
} int a[111111];
int cnt[33100],cnt0[33100],cnt1[33100];
Complex A[MAXN],B[MAXN]; int main(){
for(int i=0; i<MAXN; ++i){
wn[i].setValue(cos(2.0*PI/i),sin(2.0*PI/i));
wn_anti[i].setValue(wn[i].real,-wn[i].imag);
}
int n;
while(~scanf("%d",&n)){
for(int i=0; i<n; ++i){
scanf("%d",a+i);
}
int block=(int)(sqrt(n)+1e-6)*5; long long ans=0; for(int b=0; b<n; b+=block){
for(int i=0; i<block && b+i<n; ++i){
for(int j=i+1; j<block && b+j<n; ++j){
int tmp=a[b+i]+a[b+j];
if((tmp&1)==0){
ans+=cnt[tmp>>1];
}
++cnt[a[b+j]];
}
for(int j=i+1; j<block && b+j<n; ++j){
--cnt[a[b+j]];
}
}
} memset(cnt0,0,sizeof(cnt0));
memset(cnt1,0,sizeof(cnt1));
for(int i=0; i<n; ++i){
++cnt1[a[i]];
}
for(int b=0; b<n; b+=block){
for(int i=0; i<block && b+i<n; ++i){
--cnt1[a[b+i]];
}
for(int i=0; i<block && b+i<n; ++i){
for(int j=i+1; j<block && b+j<n; ++j){
int tmp=a[b+i]*2-a[b+j];
if(tmp>0 && tmp<=30000) ans+=cnt0[tmp];
tmp=a[b+j]*2-a[b+i];
if(tmp>0 && tmp<=30000) ans+=cnt1[tmp];
}
}
for(int i=0; i<block && b+i<n; ++i){
++cnt0[a[b+i]];
}
} memset(cnt0,0,sizeof(cnt0));
memset(cnt1,0,sizeof(cnt1));
for(int i=0; i<n; ++i){
++cnt1[a[i]];
}
for(int b=0; b<n; b+=block){
for(int i=0; i<block && b+i<n; ++i){
--cnt1[a[b+i]];
} for(int i=0; i<=30000; ++i){
A[i].setValue(cnt0[i]);
B[i].setValue(cnt1[i]);
}
Convolution(A,B,30001);
for(int i=0; i<block && b+i<n; ++i){
ans+=(long long)(A[a[b+i]<<1].real+0.5);
} for(int i=0; i<block && b+i<n; ++i){
++cnt0[a[b+i]];
}
} printf("%lld\n",ans);
}
return 0;
}
CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)的更多相关文章
- CodeChef - COUNTARI Arithmetic Progressions (FFT)
题意:求一个序列中,有多少三元组$(i,j,k)i<j<k $ 满足\(A_i + A_k = 2*A_i\) 构成等差数列. https://www.cnblogs.com/xiuwen ...
- [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)
[BZOJ 3509] [CodeChef] COUNTARI (FFT+分块) 题面 给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_ ...
- CC countari & 分块+FFT
题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...
- bzoj 3509: [CodeChef] COUNTARI] [分块 生成函数]
3509: [CodeChef] COUNTARI 题意:统计满足\(i<j<k, 2*a[j] = a[i] + a[k]\)的个数 \(2*a[j]\)不太好处理,暴力fft不如直接暴 ...
- CodeChef - COUNTARI FTT+分块
Arithmetic Progressions Given N integers A1, A2, …. AN, Dexter wants to know how many ways he can ch ...
- BZOJ 3509: [CodeChef] COUNTARI
3509: [CodeChef] COUNTARI Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 883 Solved: 250[Submit][S ...
- BZOJ3509: [CodeChef] COUNTARI
3509: [CodeChef] COUNTARI Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 339 Solved: 85[Submit][St ...
- [Educational Codeforces Round 16]D. Two Arithmetic Progressions
[Educational Codeforces Round 16]D. Two Arithmetic Progressions 试题描述 You are given two arithmetic pr ...
- Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
随机推荐
- 成为java高手的条件
世界上并没有成为高手的捷径,但一些基本原则是可以遵循的. 1.扎实的基础 数据结构.离散数学.编译原理,这些是所有计算机科学的基础,如果不掌握它们,很难写出高水平的程序.程序人人都会写,但当你发现写到 ...
- 10月27日PHP加载类、设计模式(单例模式和工厂模式)、面向对象的六大原则
加载类可以使用include.require.require_once三种中的任意一种,每个关键字都有两种方法,但是这种方法的缺点是需要加载多少个php文件,就要写多少个加载类的方法.一般也就需要加载 ...
- [NHibernate]持久化类(Persistent Classes)
系列文章 [Nhibernate]体系结构 [NHibernate]ISessionFactory配置 引言 持久化类是应用程序用来解决商业问题的类(比如,在电子交易程序中的Customer和Orde ...
- 大熊君JavaScript插件化开发------(实战篇之DXJ UI ------ ItemSelector)
一,开篇分析 Hi,大家好!大熊君又和大家见面了,还记得前两篇文章吗.主要讲述了以“jQuery的方式如何开发插件”,以及过程化设计与面向对象思想设计相结合的方式是 如何设计一个插件的,两种方式各有利 ...
- unity3D游戏-WorldFight
计划写一个2D策略类的游戏,玩法类似炉石传说,以收集卡牌为主,不同的地方在于战斗方式类似棋类游戏,而且还有一个技能系统作为补充. ---更新(2015.7.13) v2.0.1更新: 添加了基本AI ...
- LNMP环境搭建笔记
说明:前面尝试的在ubuntu12.04上搭建的LAMP环境由于开发的需要需要对php的版本进行升级,然而通过apt-get库安装的php的版本是5.3.10,不能满足开发需要.此笔记安装的php的 ...
- thinkphp3.2跨控制器调用其他模块的方法
thinphp中前台后台都有互相调用方法,这样可以省去重复内容. 1 2 $hello = new \Admin\Common\Fun\hello(); $hello->hehe(); 调用其他 ...
- Tortoise SVN 版本控制常用操作汇总(show log)
1.如何查看SVN上当前代码库的最新版本号是多少? 打开右键菜单中的 show log,然后看到一系列版本更新历史,最上面的那一行,即是最新版本号,所谓的 head revision. 2.如何查看本 ...
- word201612012
I/O (input/output) port / 输入/输出端口 IAS, Internet Authentication Service / Internet 验证服务 ICMP, Interne ...
- JavaScript深入浅出6-函数和作用域
慕课网教程视频地址:Javascript深入浅出 函数的概念:定义一次可调用多次的javascript代码段 创建函数:声明 function fuc(){} 声明前置 表达式 var fuc= ...