Luogu P2889 [USACO07NOV]挤奶的时间Milking Time

题目描述

传送门
Bessie is such a hard-working cow. In fact, she is so focused on maximizing her productivity that she decides to schedule her next N (1 ≤ N ≤ 1,000,000) hours (conveniently labeled 0..N-1) so that she produces as much milk as possible.

Farmer John has a list of M (1 ≤ M ≤ 1,000) possibly overlapping intervals in which he is available for milking. Each interval i has a starting hour (0 ≤ starting_houri ≤ N), an ending hour (starting_houri < ending_houri ≤ N), and a corresponding efficiency (1 ≤ efficiencyi ≤ 1,000,000) which indicates how many gallons of milk that he can get out of Bessie in that interval. Farmer John starts and stops milking at the beginning of the starting hour and ending hour, respectively. When being milked, Bessie must be milked through an entire interval.

Even Bessie has her limitations, though. After being milked during any interval, she must rest R (1 ≤ R ≤ N) hours before she can start milking again. Given Farmer Johns list of intervals, determine the maximum amount of milk that Bessie can produce in the N hours.

奶牛Bessie在0~N时间段产奶。农夫约翰有M个时间段可以挤奶,时间段f,t内Bessie能挤到的牛奶量e。奶牛产奶后需要休息R小时才能继续下一次产奶,求Bessie最大的挤奶量。

输入输出格式

输入格式:

  • Line 1: Three space-separated integers: N, M, and R

  • Lines 2..M+1: Line i+1 describes FJ’s ith milking interval withthree space-separated integers: starting_houri , ending_houri , and efficiencyi

输出格式:

  • Line 1: The maximum number of gallons of milk that Bessie can product in the N hours

输入输出样例

输入样例#1: 复制

12 4 2
1 2 8
10 12 19
3 6 24
7 10 31

输出样例#1: 复制

43

思路

  • 可以发现从挤奶开始一直到休息完是一个整体,都不能进行转移

  • 所以直接将挤奶时间看作一个整体变成 $time+r$ 进行转移就可以了

  • $f[i]$表示第i分钟的最优收益,$time[i]$ 为这次挤奶的持续时间, $w[i]$ 是这次挤奶的收益

  • 转移方程 $f[i+time[i]+r]=max(f[i+time[i]+r],f[i]+w[i])$

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define re register int
using namespace std;
int read(){
int x=0,w=1; char ch=getchar();
while(ch!='-'&&(ch<'0'&&ch>'9')) ch=getchar();
if(ch=='-') w=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*w;
}
int n,m,r,f[2000005],y;
bool tmp[2000005];
struct data{
int st,tim,w;
}cow[1005];
bool cmp(data cow,data b){
return cow.st<b.st;
}
int main(){
//freopen("p2889.in","r",stdin);
//freopen("p2889.out","w",stdout);
n=read(),m=read(),r=read();
n=n+r+10;
for(re i=1;i<=m;i++){
cow[i].st=read(),y=read(),cow[i].w=read();
cow[i].tim=y-cow[i].st+r;
tmp[cow[i].st]=1;
}
sort(cow+1,cow+1+m,cmp);
int j=1;
for(re i=0;i<=n;i++){
f[i]=max(f[i],f[i-1]);
if(tmp[i]){
for(;cow[j].st==i;j++){
f[i+cow[j].tim]=max(f[i+cow[j].tim],f[i]+cow[j].w);
}
}
}
printf("%d\n",f[n]);
return 0;
}

【题解】Luogu P2889 [USACO07NOV]挤奶的时间Milking Time的更多相关文章

  1. P2889 [USACO07NOV]挤奶的时间Milking Time

    P2889 [USACO07NOV]挤奶的时间Milking Time 奶牛Bessie在0~N时间段产奶.农夫约翰有M个时间段可以挤奶,时间段f,t内Bessie能挤到的牛奶量e.奶牛产奶后需要休息 ...

  2. bzoj1642 / P2889 [USACO07NOV]挤奶的时间Milking Time

    P2889 [USACO07NOV]挤奶的时间Milking Time 普通的dp 休息时间R其实就是把结束时间后移R个单位而已.但是终点也需要后移R位到n+R. 每个时间段按起始时间排序,蓝后跑一遍 ...

  3. [USACO07NOV]挤奶的时间Milking Time

    https://daniu.luogu.org/problemnew/show/2889 按右端点从小到大排序后DP dp[i] 到第i个时间段的最大产奶量 不能按左端点排序,第i段由第j段更新时,第 ...

  4. 题解 最优的挤奶方案(Optimal Milking)

    最优的挤奶方案(Optimal Milking) 时间限制: 1 Sec  内存限制: 128 MB 题目描述 农场主 John 将他的 K(1≤K≤30)个挤奶器运到牧场,在那里有 C(1≤C≤20 ...

  5. [题解] Luogu P5446 [THUPC2018]绿绿和串串

    [题解] Luogu P5446 [THUPC2018]绿绿和串串 ·题目大意 定义一个翻转操作\(f(S_n)\),表示对于一个字符串\(S_n\), 有\(f(S)= \{S_1,S_2,..., ...

  6. 【题解】Luogu P1204 [USACO1.2]挤牛奶Milking Cows

    原题传送门:P1204 [USACO1.2]挤牛奶Milking Cows 实际是道很弱智的题目qaq 但窝还是觉得用珂朵莉树写会++rp(窝都初二了,还要考pj) 前置芝士:珂朵莉树 窝博客里对珂朵 ...

  7. 题解 Luogu P2499: [SDOI2012]象棋

    关于这道题, 我们可以发现移动顺序不会改变答案, 具体来说, 我们有以下引理成立: 对于一个移动过程中的任意一个移动, 若其到达的位置上有一个棋子, 则该方案要么不能将所有棋子移动到最终位置, 要么可 ...

  8. 题解 luogu P1144 【最短路计数】

    本蒟蒻也来发一次题解第一篇请见谅 这个题有几个要点 1.无向无权图,建图的时候别忘记建来回的有向边[因此WA掉1次 2.无权嘛,那么边长建成1就好了2333333 3.最短路采用迪杰斯特拉(别忘用堆优 ...

  9. [LUOGU] P2886 [USACO07NOV]牛继电器Cow Relays

    https://www.luogu.org/problemnew/show/P2886 给定无向连通图,求经过k条边,s到t的最短路 Floyd形式的矩阵乘法,同样满足结合律,所以可以进行快速幂. 离 ...

随机推荐

  1. python中的xlrd模块学习

    1.xlrd模块主要用于excel表格的读取,支持xlsx和xls:xlwt主要用于excel的写,库的读取 2.常用单元格中的数据类型 0.empty(空的):1.string(text):2.nu ...

  2. Java_接口回调与匿名内部类

    匿名内部类 警告:匿名内部类本质上是一个对象 如果有一个接口或者抽象类,必须要用class定义一个实现类写重写抽象方法,才能创建对象并使用. 匿名内部类就是省略了用class定义子类的过程,直接使用父 ...

  3. Pytorch_Part6_正则化

    VisualPytorch beta发布了! 功能概述:通过可视化拖拽网络层方式搭建模型,可选择不同数据集.损失函数.优化器生成可运行pytorch代码 扩展功能:1. 模型搭建支持模块的嵌套:2. ...

  4. 【转】java-selenium三种等待方式

    方式1: 线程等待:Thread.sleep(xxxx) 只要在case中加入sleep就会强制等待设置的时间后才会执行之后的命令,这种等待一般适用于调试脚本的时候. java代码: //等待3秒 T ...

  5. Java·Maven的安装与配置

    阅文时长 | 0.58分钟 字数统计 | 937.6字符 主要内容 | 1.引言&背景 2.Maven的下载与安装 3.Maven全局配置 4.Settings.xml文件的配置 5.远程仓库 ...

  6. Envoy:开启访问日志,access_log

    access_log: - name: envoy.listener.accesslog typed_config: "@type": type.googleapis.com/en ...

  7. gitbook安装使用教程

    以下是gitbook的简略安装使用过程,可以参考一下.后续有时间我再回头修改完善实验目的:安装gitbook后,将相关的文件发布到gitlab上安装node.js在cmd下执行安装npm instal ...

  8. Mysql_源码包安装详细过程

    一.mysql安装 1.二进制安装 2.源码包安装 3.rpm包安装 1.源码包安装 1)上传或下载源码包 [root@db02 ~]# rz mysql-5.6.46.tar.gz 2)安装依赖 由 ...

  9. Java 值类型和引用类型

    现实世界中的值和引用 假定你在读一份非常棒的东西,希望一个朋友也去读它.为了避免被人投诉支持盗版,进一步假定它是公共领域中的一份文档.那么,需要为朋友提供什么才能让他读到文档呢? 这完全取决于阅读的内 ...

  10. Linux系统添加永久静态路由的方法(包含Centos7)

    一.使用route命令添加 使用route 命令添加的路由,机器重启或者网卡重启后路由就失效了,方法:A.添加到主机的路由# route add –host 192.168.1.10 dev eth0 ...