43.Kruskal算法
public class KruskalCase {
private int edgeNum; //边的个数
private char[] vertexs; //顶点数组
private int[][] matrix; //邻接矩阵
//使用 INF 表示两个顶点不能连通
private static final int INF = Integer.MAX_VALUE;
public static void main(String[] args) {
char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
//克鲁斯卡尔算法的邻接矩阵
int matrix[][] = {
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/ { 0, 12, INF, INF, INF, 16, 14},
/*B*/ { 12, 0, 10, INF, INF, 7, INF},
/*C*/ { INF, 10, 0, 3, 5, 6, INF},
/*D*/ { INF, INF, 3, 0, 4, INF, INF},
/*E*/ { INF, INF, 5, 4, 0, 2, 8},
/*F*/ { 16, 7, 6, INF, 2, 0, 9},
/*G*/ { 14, INF, INF, INF, 8, 9, 0}};
//大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.
//创建KruskalCase 对象实例
KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
//输出构建的
kruskalCase.print();
kruskalCase.kruskal();
}
//构造器
public KruskalCase(char[] vertexs, int[][] matrix) {
//初始化顶点数和边的个数
int vlen = vertexs.length;
//初始化顶点, 复制拷贝的方式
this.vertexs = new char[vlen];
for(int i = 0; i < vertexs.length; i++) {
this.vertexs[i] = vertexs[i];
}
//初始化边, 使用的是复制拷贝的方式
this.matrix = new int[vlen][vlen];
for(int i = 0; i < vlen; i++) {
for(int j= 0; j < vlen; j++) {
this.matrix[i][j] = matrix[i][j];
}
}
//统计边的条数
for(int i =0; i < vlen; i++) {
for(int j = i+1; j < vlen; j++) {
if(this.matrix[i][j] != INF) {
edgeNum++;
}
}
}
}
public void kruskal() {
int index = 0; //表示最后结果数组的索引
int[] ends = new int[edgeNum]; //用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点
//创建结果数组, 保存最后的最小生成树
EData[] rets = new EData[edgeNum];
//获取图中 所有的边的集合 , 一共有12边
EData[] edges = getEdges();
System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共"+ edges.length); //12
//按照边的权值大小进行排序(从小到大)
sortEdges(edges);
//遍历edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets, 否则不能加入
for(int i=0; i < edgeNum; i++) {
//获取到第i条边的第一个顶点(起点)
int p1 = getPosition(edges[i].start); //p1=4
//获取到第i条边的第2个顶点
int p2 = getPosition(edges[i].end); //p2 = 5
//获取p1这个顶点在已有最小生成树中的终点
int m = getEnd(ends, p1); //m = 4
//获取p2这个顶点在已有最小生成树中的终点
int n = getEnd(ends, p2); // n = 5
//是否构成回路
if(m != n) { //没有构成回路
ends[m] = n; // 设置m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]
rets[index++] = edges[i]; //有一条边加入到rets数组
}
}
//<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
//统计并打印 "最小生成树", 输出 rets
System.out.println("最小生成树为");
for(int i = 0; i < index; i++) {
System.out.println(rets[i]);
}
}
//打印邻接矩阵
public void print() {
System.out.println("邻接矩阵为: \n");
for(int i = 0; i < vertexs.length; i++) {
for(int j=0; j < vertexs.length; j++) {
System.out.printf("%12d", matrix[i][j]);
}
System.out.println();//换行
}
}
/**
* 功能:对边进行排序处理, 冒泡排序
* @param edges 边的集合
*/
private void sortEdges(EData[] edges) {
for(int i = 0; i < edges.length - 1; i++) {
for(int j = 0; j < edges.length - 1 - i; j++) {
if(edges[j].weight > edges[j+1].weight) {//交换
EData tmp = edges[j];
edges[j] = edges[j+1];
edges[j+1] = tmp;
}
}
}
}
/**
*
* @param ch 顶点的值,比如'A','B'
* @return 返回ch顶点对应的下标,如果找不到,返回-1
*/
private int getPosition(char ch) {
for(int i = 0; i < vertexs.length; i++) {
if(vertexs[i] == ch) {//找到
return i;
}
}
//找不到,返回-1
return -1;
}
/**
* 功能: 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组
* 是通过matrix 邻接矩阵来获取
* EData[] 形式 [['A','B', 12], ['B','F',7], .....]
* @return
*/
private EData[] getEdges() {
int index = 0;
EData[] edges = new EData[edgeNum];
for(int i = 0; i < vertexs.length; i++) {
for(int j=i+1; j <vertexs.length; j++) {
if(matrix[i][j] != INF) {
edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
}
}
}
return edges;
}
/**
* 功能: 获取下标为i的顶点的终点(), 用于后面判断两个顶点的终点是否相同
* @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成
* @param i : 表示传入的顶点对应的下标
* @return 返回的就是 下标为i的这个顶点对应的终点的下标, 一会回头还有来理解
*/
private int getEnd(int[] ends, int i) { // i = 4 [0,0,0,0,5,0,0,0,0,0,0,0]
while(ends[i] != 0) {
i = ends[i];
}
return i;
}
}
//创建一个类EData ,它的对象实例就表示一条边
class EData {
char start; //边的一个点
char end; //边的另外一个点
int weight; //边的权值
//构造器
public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
//重写toString, 便于输出边信息
@Override
public String toString() {
return "EData [<" + start + ", " + end + ">= " + weight + "]";
}
}
43.Kruskal算法的更多相关文章
- Kruskal算法模拟讲解
Kruskal 算法是一个求最小生成树的算法,即求最小的开销等 算法可以这样,要求得最小生成树,那么n个节点只能包括n-1条边 所以我们应该转换为寻找这最短的n-1条边,因此,可以先对所有的 边进行从 ...
- 经典算法题每日演练——第十六题 Kruskal算法
原文:经典算法题每日演练--第十六题 Kruskal算法 这篇我们看看第二种生成树的Kruskal算法,这个算法的魅力在于我们可以打一下算法和数据结构的组合拳,很有意思的. 一:思想 若存在M={0, ...
- HDU 5253 连接的管道(Kruskal算法求解MST)
题目: 老 Jack 有一片农田,以往几年都是靠天吃饭的.但是今年老天格外的不开眼,大旱.所以老 Jack 决定用管道将他的所有相邻的农田全部都串联起来,这样他就可以从远处引水过来进行灌溉了.当老 J ...
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- 最小生成树---Prim算法和Kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- 最小生成树的Kruskal算法实现
最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...
- 最小生成树——kruskal算法
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...
- Kruskal算法(三)之 Java详解
前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的 ...
- Kruskal算法(二)之 C++详解
本章是克鲁斯卡尔算法的C++实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转 ...
随机推荐
- SpringCloud微服务实战——搭建企业级开发框架(三十五):SpringCloud + Docker + k8s实现微服务集群打包部署-集群环境部署
一.集群环境规划配置 生产环境不要使用一主多从,要使用多主多从.这里使用三台主机进行测试一台Master(172.16.20.111),两台Node(172.16.20.112和172.16.20.1 ...
- DG修复:异常关库导致的数据库启动失败ORA-01110及GAP修复
问题描述:正在应用的备库是一套11.2.0.4的rac环境,但是被直接crsctl stop cluster集群强制关库,重新启动之后导致数据库启动失败,报错 Errors in file /u01/ ...
- js(jQuery)获取自定义data属性的值
有时候因为需要在标签上设置自定义data属性值, <div class="col-sm-6 col-md-4" id="get_id" data-c_id ...
- _MSC_VER值对应的Visual Studio版本
移步官网查看更多定义 1. 关于 今天使用cmake需要判断_MSC_VER的值是多少,额,官网查了下,还真不少 2. 查看 用下面的代码可以输出宏_MSC_VER的值 #pragma once #i ...
- 【LeetCode】1095. 山脉数组中查找目标值 Find in Mountain Array
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 二分查找 日期 题目地址:https://leetco ...
- 【LeetCode】面试题13. 机器人的运动范围
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 BFS 日期 题目地址:https://leetcod ...
- 拥有大量相同结构Activity的项目精简经验—— ReUsableActivity
简介 一个可以重复利用的Activity.通过设置不同的Fragment加入到一个可复用的Activity中实现代码的精简. 这个仓库可以用来精简项目中拥有大量重复的AppBar布局的Android ...
- 【LeetCode】449. Serialize and Deserialize BST 解题报告(Python)
[LeetCode]449. Serialize and Deserialize BST 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode.com/pro ...
- 适用于 Flutter 的 Google 移动广告 SDK 正式版现已发布
作者 / Zoey Fan,Flutter 产品经理 应用变现有多种方法: 通过实体企业的店面接受付款.提供订阅或应用内购买,或者直接在应用中投放广告.经过六个月的 beta 测试期,我们很高兴能够推 ...
- ios离线打包报错Showing Recent Messages :-1: HBuilder has conflicting provisioning settings. HBuilder is automatically signed for development, but a conflicting code signing identity iPhone Distribution has
1.解决方案找到项目工程文件右击->显示包内容->双击project.pbxproj->搜索distribution改写成Developer