Part III 中值定理与一元微分学应用

1. 中值定理

费马定理

\[设f(x)在x=x_{0}处 \begin{cases}
1) & 可导 \\
2) & 取极值
\end{cases} \Rightarrow {f}'(x_{0})=0
\]

罗尔定理

\[设f(x)满足以下三个条件 \begin{cases}
1) & [a,b]连续 \\
2) & (a,b)可导 \\
3) & f(a)=f(b)
\end{cases} ,则\exists \xi \in (a,b),使得 {f}'(\xi)=0
\]

拉格朗日中值定理

\[设f(x)满足以下两个条件 \begin{cases}
1) & [a,b]连续 \\
2) & (a,b)内可导
\end{cases} ,则\exists \xi \in (a,b),使得 {f}'(\xi)=\frac{f(b)-f(a)}{b-a}
\]

柯西中值定理

\[设f(x),g(x)满足 \begin{cases}
1) & [a,b]连续 \\
2) & (a,b)内可导 \\
3) & {g}'(x)\neq0
\end{cases} ,则\exists \xi \in (a,b),使得 \frac{{f}'(\xi)}{{g}'(x)}=\frac{f(b)-f(a)}{g(b)-g(a)}
\]

柯西、拉格朗日、罗尔三者间的关系

柯西中值定理 → 拉格朗日中值定理 → 罗尔定理。But 拉格朗日中值定理 !→ 柯西中值定理

涉及f(x)的应用,可能需要用到的定理

有界性定理,最值定理,介值定理,零点定理

罗尔定理的应用范式

\(f(a)=f(b) \Rightarrow {f}'(\xi)=0\)

罗尔定理的关键,以及达成这个关键的两个途径

关键:\(F(a)=F(b) \Rightarrow {F}'(\xi)=0\)

两个途径:

  1. 求导公式逆用法
  2. 积分还原法
    1. 将欲证结论中的\(\xi 改为 x\)
    2. 积分,令c=0
    3. 移项,使等式一端为0,则另一端记为F(x)

2. 单调性与极值

导数的几何应用有哪些

三点两性一线:极值点、最值点、拐点;单调性,凹凸性;渐近线

极值的定义需要注意的地方

必须是双侧定义,否则不考虑极值

广义极值

\(\exists x_{0}的某个邻域, \forall x\in U(x_{0}, \delta) ,都有f(x) \leq f(x_{0}),则x_{0}为f(x)的真正极大值点\)

狭义极值(真正极值)

\(\exists x_{0}的某个【去心】邻域, \forall x\in U(x_{0}, \delta) ,都有f(x) \leq f(x_{0}),则x_{0}为f(x)的真正极大值点\)

单调性与极值判别

  1. \(若{f}'(x)>0, \forall x \in I,则f(x)在I上单调递增;若{f}'(x)<0, \forall x \in I,则f(x)在I上单调递减;\)
  2. \[ 若f(x)在x= x_{0}处连续,在U(x_{0}, \delta)内可导,则\begin{cases}
    当x_{0} \in(x_{0}-\delta, x_{0})时, {f}'(x)<0,当x_{0}\in (x_{0}, x_{0}+\delta)时,{f}'(x)>0,\Rightarrow 极小 \\
    当x_{0} \in(x_{0}-\delta, x_{0})时, {f}'(x)>0,当x_{0}\in (x_{0}, x_{0}+\delta)时,{f}'(x)<0,\Rightarrow 极大 \\
    若{f}'(x)在(x_{0}-\delta, x_{0})与(x_{0}, x_{0}+\delta)内不变号 \Rightarrow 不是极值
    \end{cases}
    \]
  3. \(若f(x)在x=x_{0}处二阶可导,{f}'(x_{0})=0,{f}''(x_{0})>0 \Rightarrow 极小值;若f(x)在x=x_{0}处二阶可导,{f}'(x_{0})=0,{f}''(x_{0})<0 \Rightarrow 极大值\)

3. 零碎问题

函数的凹凸性

\[\forall x_1, x_2 \in I, 有:\begin{cases}
\frac{f(x_1)+f(x_2)}{2} > f(\frac{x_1+x_2}{2}) \Rightarrow f(x), 是凹曲线 \\
\frac{f(x_1)+f(x_2)}{2} < f(\frac{x_1+x_2}{2}) \Rightarrow f(x), 是凸曲线
\end{cases}
\]

函数拐点

连续曲线凹凸弧的分界点

拐点判别法

设f(x)在I上二阶可导

  1. \(
    \begin{cases}
    若{f}''(x_0)>0,\forall x\in I \Rightarrow f(x)是凹的 \\
    若{f}''(x_0)<0,\forall x\in I \Rightarrow f(x)是凸的
    \end{cases}
    \)
  2. \(若f(x)在x_0点的左右邻域{f}''(x)变号 \Rightarrow (x_0,f(x_0))为拐点\)

铅直渐近线

\(若\lim \limits_{x \to x_0^+(或x_0^-)}f(x)=\infty,则称x=x_0为f(x)的一条铅直渐进线\)

出现在:无定义点 || 开区间端点

水平渐近线

\(若\lim \limits_{x \to +\infty(或-\infty)}f(x)=A,则称y=A为f(x)的一条水平渐进线\)

斜渐近线

\(若\lim \limits_{x \to +\infty(或-\infty)} \frac{f(x)}{x}=a\neq0,且\lim \limits_{x \to +\infty(或-\infty)}[f(x)-ax]=b \exists,则称y=ax+b为f(x)的一条斜渐进线\)

曲率与曲率半径

  1. 曲率:\(k = \frac{|y''|}{(1+y^{'2})^{\frac{3}{2}}}\)
  2. 曲率半径:\(R = \frac{1}{k} = \frac{(1+y^{'2})^{\frac{3}{2}}}{|y''|}\)

弧微分

  1. 直角坐标系下的弧微分公式:\(L:\ y=f(x)\)
\[ds = \sqrt{(dx)^2 + (dy)^2}
= \sqrt{1 + {\frac{dy}{dx}^2}}dx
= \sqrt{1+f^{'2}(x)}dx
\]
  1. 参数方程下的弧微分公式:$ L:\ \begin{cases}

    x = \varphi(t) \

    y = \varphi(t)

    \end{cases}$
\[ds = \sqrt{(dx)^2 + (dy)^2}
= \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}dt
= \sqrt{\varphi ^{'2}(t) = \varphi ^{'2}(t)}dt
\]

函数的最值的求法

  1. $

    对于函数f(x),在[a,b]上找出三类点\begin{cases}

    {f}'x=0 \Rightarrow x_0驻点 \

    {f}'(x)!\exists \Rightarrow不可导点 \

    端点a,b

    \end{cases}

    $

    \(比较f(x_0),f(x_1),f(a),f(b)大小取其最大(最小)值为最大(最小)值\)
  2. \(若在I上求出唯一极大(极小)值点,则由实际背景确定最大(小)值\)

[数学]高数部分-Part III 中值定理与一元微分学应用的更多相关文章

  1. [数学]高数部分-Part VII 微分方程

    Part VII 微分方程 回到总目录 Part VII 微分方程 微分方程的概念 一阶微分方程求解-变量可分离型 一阶微分方程求解-齐次型 一阶微分方程求解-一阶线性型 二阶常系数齐次D.E.求解: ...

  2. [数学]高数部分-Part VI 重积分

    Part VI 重积分 回到总目录 Part VI 重积分 二重积分的普通对称性 二重积分的轮换对称性(直角坐标系下) 二重积分直角坐标系下的积分方法 二重积分极坐标系下的积分方法 二重积分中值定理 ...

  3. [数学]高数部分-Part IV 一元函数积分学

    Part IV 一元函数积分学 回到总目录 Part IV 一元函数积分学 不定积分定义 定积分定义 不定积分与定积分的几何意义 牛顿-莱布尼兹公式 / N-L 公式 基本积分公式 点火公式(华里士公 ...

  4. [数学]高数部分-Part V 多元函数微分学

    Part V 多元函数微分学 回到总目录 Part V 多元函数微分学 多元函数微分的极限定义 多元函数微分的连续性 多元函数微分的偏导数 z=f(x, y) 多元函数微分-链式求导规则 多元函数-高 ...

  5. [数学]高数部分-Part I 极限与连续

    Part I 极限与连续 回到总目录 Part I 极限与连续 一.极限 泰勒公式 基本微分公式 常用等价无穷小 函数极限定义 数列极限数列极限 极限的性质 极限的唯一性 极限的局部有限性 极限的局部 ...

  6. 高数解题神器:拍照上传就出答案,这个中国学霸做的AI厉害了 | Demo

    一位叫Roger的中国学霸小哥的拍照做题程序mathAI一下子火了,这个AI,堪称数学解题神器. 输入一张包含手写数学题的图片,AI就能识别出输入的数学公式,然后给出计算结果. 不仅加减乘除基本运算, ...

  7. 期权定价公式:BS公式推导——从高数和概率论角度

    嗯,自己看了下书.做了点笔记,做了一些相关的基础知识的补充,尽力做到了详细,这样子,应该上过本科的孩子,只要有高数和概率论基础.都能看懂整个BS公式的推导和避开BS随机微分方程求解的方式的证明了.

  8. Contest 高数题 樹的點分治 樹形DP

    高数题 HJA最近在刷高数题,他遇到了这样一道高数题.这道高数题里面有一棵N个点的树,树上每个点有点权,每条边有颜色.一条路径的权值是这条路径上所有点的点权和,一条合法的路径需要满足该路径上任意相邻的 ...

  9. linux 服务器所支持的最大句柄数调高数倍(与服务器的内存数量相关)

    https://github.com/alibaba/p3c/blob/master/阿里巴巴Java开发手册(详尽版).pdf 2. [推荐]调大服务器所支持的最大文件句柄数(File Descri ...

随机推荐

  1. map和forEach的区别

    总结 forEach()可以做到的东西,map()也同样可以.反过来也是如此. map()会分配内存空间存储新数组并返回,forEach()不会返回数据. forEach()允许callback更改原 ...

  2. 用户名、密码、整数等常用的js正则表达式

    1 用户名正则 //用户名正则,4到16位(字母,数字,下划线,减号) var uPattern = /^[a-zA-Z0-9_-]{4,16}$/; //输出 true console.log(uP ...

  3. 使用 ACE 库框架在 UNIX 中开发高性能并发应用

    使用 ACE 库框架在 UNIX 中开发高性能并发应用来源:developerWorks 中国 作者:Arpan Sen ACE 开放源码工具包可以帮助开发人员创建健壮的可移植多线程应用程序.本文讨论 ...

  4. Mybatis中 SIMPLE、REUSE、BATCH的区别

    Executor分成两大类,一类是CacheExecutor,另一类是普通Executor. 普通类又分为: ExecutorType.SIMPLE: 这个执行器类型不做特殊的事情.它为每个语句的执行 ...

  5. spring的不同事务传播行为和用途。

    1.PROPAGATION_REQUIRED:如果当前没有事务,就创建一个事务,如果当前存在事务,就加入该事务,该设置是最常用的设置. 2.PROPAGATION_SUPPORTS:支持当前事务,如果 ...

  6. EntityFramework Core (一)记一次 .net core 使用 ef 6

    使用传统的sql去操作数据库虽然思路更加清晰,对每一步数据库读写操作都能监控到,但是对大数据存储,或存储规则复杂的程序就需要编写大量的SQL语句且不易维护..orm大大方便了复杂的数据库读写操作, 让 ...

  7. C#深入理解多态

    1.里氏替换原则 1.里氏替换原则:在一个软件系统中,如果子类出现在父类出现的位置,而整个软件功能又没有影响,那么咱们称为里氏替换. 2. 考试题:父类变量指向子类对象!! 3.里氏替换  是     ...

  8. C++STL标准库学习笔记(四)multiset续

    自定义排序规则的multiset用法 前言: 在这个笔记中,我把大多数代码都加了注释,我的一些想法和注解用蓝色字体标记了出来,重点和需要关注的地方用红色字体标记了出来,只不过这一次的笔记主要是我的补充 ...

  9. redis迁移工具redis-migrate-tool

    目录 一.简介 二.测试 三.安装 四.验证 一.简介 redis-migrate-tool是在redis之间迁移数据的一个方便且有用的工具.他会已服务方式不断同步两边的数据.等到合适时间,中断red ...

  10. 什么是mysql innodb cluster?

    目录 一.简介 二.特性 一.简介 MySQL InnoDB集群提供了一个集成的,本地的,HA解决方案.MySQL InnoDB集群由以下几部分组成: MySQL Servers with Group ...