【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
【模板】卢卡斯定理/Lucas 定理
题目链接:luogu P3807
题目大意
求 C(n,n+m)%p 的值。
p 保证是质数。
思路
Lucas 定理内容
对于非负整数 \(n\),\(m\),质数 \(p\),有:
\(C_m^n\equiv \prod\limits_{i=0}^kC_{m_i}^{n^i}(\bmod\ p)\)
其中 \(m=m_kp^k+...+m_1p+m_0\),\(n=n_kp^k+...+n_1p+n_0\)。(其实就是 \(n,m\) 的 \(p\) 进制展开)
那我们一般做题用的是递推式,也就是 \(C_m^n\equiv C_{\left\lfloor m/p\right\rfloor}^{\left\lfloor n/p\right\rfloor}C_{m\bmod p}^{n\bmod p}(\bmod\ p)\)
(当 \(n>m\) 时,我们规定 \(C_{m}^n=0\))
啥时候会用
我们有时候要算组合数,可能 \(C_{m}^n\) 的 \(n,m\) 很大,这时候一般做题就会让他取模一个数 \(\bmod \ p\)。
那如果 \(p>m\),我们可以愉快的用这个式子求:\(C_{m}^n=\dfrac{m!}{n!(m-n)!}\)
算出 \(n!\) 和 \((m-n)!\) 的逆元,就可以搞。
可当 \(m\geqslant p\) 的时候,分母的乘法逆元可能不存在。(因为 \(x\) 是 \(p\) 的倍数的话 \(x\) 就没有模 \(p\) 的逆元)
那这个时候我们就可以用 Lucas 定理把这个组合数拆成几个 \(m<p\) 的,就可以搞了。
证明
证明 Lucas 定理之前,我们先证明两个式子。
式一:
\(C_p^i\equiv \frac{p}{i}C_{p-1}^{i-1}\equiv0(\bmod\ p),(1\leqslant i<p)\)
证明:
\(C_p^i=\dfrac{p!}{i!(p-i)!}=\dfrac{p}{i}\dfrac{(p-1)!}{(i-1)!(p-1-(i-1))!}=\frac{p}{i}C_{p-1}^{i-1}\)
由于 \(1\leqslant i<p\),故 \(i\) 会有 \(p\) 的逆元 \(inv_i\)
\(\frac{p}{i}C_{p-1}^{i-1}=p\times inv_i\times C_{p-1}^{i-1}\)
那这个地方都是 \(p\) 的倍数,那它被 \(p\) 取模一定是 \(0\),故得证。
式二:
根据二项式定理:
\((1+n)^p\equiv C_p^0+C_p^1x+...+C_p^{p-1}x^{p-1}+C_p^px^p(\bmod\ p)\)
再根据式一 \(C_p^i\equiv0(\bmod\ p),(1\leqslant i<p)\),可以得到
\((1+n)^p\equiv C_p^0+C_p^px^p\equiv 1+x^p(\bmod\ p)\)
接着我们开始证明,先设 \(\left\lfloor m/p\right\rfloor=q_m,\left\lfloor n/p\right\rfloor=q_n,m\bmod p=r_m,n\bmod p=r_n\)。
那有 \(m=q_mp+r_m,n=q_np+r_n\)。
接着我们继续用二项式定理:
\((1+x)^m=\sum\limits_{i=1}^{m}C_{m}^ix^i\)
然后我们把左边给化简:
\(\begin{aligned}(1+x)^m & =(1+x)^{q_mp+r_m} \\ & =(1+x)^{q_mp}\cdot(1+x)^{r_m} \\& =[(1+x)^p]^{q_m}\cdot(1+x)^{r_m}\\&\equiv(1+x^p)^{q_m}\cdot(1+x)^{r_m}[式二]\\&\equiv\sum\limits_{i=1}^{q_m}C_{q_m}^ix^{ip}\sum\limits_{i=1}^{r_m}C_{r_m}^{i}x^i(\bmod\ p)\end{aligned}\)
那就有:
\(\sum\limits_{i=1}^{m}C_{m}^ix^i\equiv\sum\limits_{i=1}^{q_m}C_{q_m}^ix^{ip}\sum\limits_{i=1}^{r_m}C_{r_m}^{i}x^i(\bmod\ p)\)
那对于任意一个数 \(z\),必然会有一组 \(i,j\) 满足 \(x^z=x^{pi}x^j\)
不难看出这其实就是满足 \(z=pi+j\),所以当且仅当 \(i=\left\lfloor \dfrac{z}{p}\right\rfloor,j=z\bmod p\)。
那也就是说左边的 \(i\) 取任意一个,右边都有一个新的跟它对于恒等。
左边 \(i=x\),右边的就分别是 \(i=\left\lfloor \dfrac{x}{p}\right\rfloor,i=x\bmod p\)
那当 \(i=x\),就有:
\(\begin{aligned}C_m^nx^n&=C_{q_m}^{q_n}x^{q_np}C_{r_m}^{r_n}x^{r_n}\\C_m^nx^n&=C_{q_m}^{q_n}C_{r_m}^{r_n}x^{q_np+r_n}\\C_m^nx^n&=C_{q_m}^{q_n}C_{r_m}^{r_n}x^n\end{aligned}\)
两边同乘 \(inv(x^n)\),就有了 \(C_{m}^n=C_{q_m}^{q_n}C_{r_m}^{r_n}\)
得证。
本题
其实逆元的话直接要用的话直接 \(x^{p-2}\bmod p\) 更好,不用像我这样线性求出每个。
代码
#include<cstdio>
#define ll long long
using namespace std;
ll T, n, m, p;
ll jc[100001], inv[100001];
ll ksm(ll x, ll y) {
ll re = 1;
while (y) {
if (y & 1) re = (re * x) % p;
x = (x * x) % p;
y >>= 1;
}
return re;
}
ll C(ll x, ll y) {//暴力算组合数
if (x > y) return 0;
return ((jc[y] * inv[x]) % p * inv[y - x]) % p;
}
ll work(ll n, ll m) {//Lucas 定理
if (!n) return 1;
return (work(n / p, m / p) * C(n % p, m % p)) % p;
}
int main() {
scanf("%lld", &T);
while (T--) {
scanf("%lld %lld %lld", &n, &m, &p);
jc[0] = 1;
for (ll i = 1; i <= p; i++)//预处理阶乘与其逆元
jc[i] = (jc[i - 1] * i) % p;
inv[p - 1] = ksm(jc[p - 1], p - 2);
for (ll i = p - 2; i >= 0; i--)
inv[i] = (inv[i + 1] * (i + 1)) % p;
printf("%lld\n", work(n, n + m));
}
return 0;
}
【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)的更多相关文章
- [luogu P3384] [模板]树链剖分
[luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...
- Luogu P2742 模板-二维凸包
Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 ...
- 旋度定理(Curl Theorem)和散度定理(Divergence theorem)
原文链接 首先说说格林公式(Green's theorem).对于一段封闭曲线,若其围城的区域D为单连通区域(内部任意曲线围城的区域都属于院区域),则有如下公式: 其中其中L为D的边界,取正方向.如果 ...
- luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树)(主席树)
luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include< ...
- 【luogu P3807 卢卡斯定理】 模板
题目链接:https://www.luogu.org/problemnew/show/P3807 Lucas定理用来求大组合数对一个质数取模的值,不大于10^5用逆元,大于10^5就用Lucas转化成 ...
- luogu P3807 【模板】卢卡斯定理
求 C(n,n+m)%p C(m,n)%p=C(m%p,n%p)*C(m/p,n/p) #include<cstdio> #include<cstring> #include& ...
- 【洛谷P3807】(模板)卢卡斯定理
卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...
- 洛谷.3807.[模板]卢卡斯定理(Lucas)
题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...
- 887. 求组合数 III(模板 卢卡斯定理)
a,b都非常大,但是p较小 前边两种方法都会超时的 N^2 和NlongN 可以用卢卡斯定理 P*longN*longP 定义: 代码: import java.util.Scanner ...
随机推荐
- [BD] Flume
什么是Flume 采集日志,存在HDFS上 分布式.高可用.高可靠的海量日志采集.聚合和传输系统 支持在日志系统中定制各类数据发送方,用于收集数据 支持对数据进行简单处理,写到数据接收方 组件 sou ...
- CENTOS7network config文件不能直接bak 必须建立bak目录再bak
CENTOS7network config文件不能直接bak 必须建立bak目录再bak
- 单独跑ltp-20200508 ./runltp
# cat r3.sh#!/bin/bash # cat r3.sh#!/bin/bashi=1for ((; i<=1000; i++))do/opt/ltp/runltp -s fmtmsg ...
- 007.Ansible变量Fact,魔法变量和lookup生成变量
一 fact变量 1.1 fact简介 ansible有一个模块叫setup,用于获取远程主机的相关信息,并可以将这些信息作为变量在playbook里进行调用.而setup模块获取这些信息的方法就是 ...
- Java 中布尔(boolean)类型占用多少个字节
为什么要问这个问题,首先在Java中定义的八种基本数据类型中,除了其它七种类型都有明确的内存占用字节数外,就 boolean 类型没有给出具体的占用字节数,因为对虚拟机来说根本就不存在 boolean ...
- 从实例分析ELF格式的.gnu.hash区与glibc的符号查找
前言 ELF格式的.gnu.hash节在设计上比较复杂,直接从glibc源码进行分析的难度也比较大.今天静下心来看了这篇精彩的文章,终于将布隆滤波器.算数运算转为位运算等一系列细节搞懂了(值得一提的是 ...
- Ubuntu 16.04安装PyCharm
PyCharm一个是Python集成开发环境,它既提供收费的专业版,也提供免费的社区版本.PyCharm带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试.语法高亮.Proj ...
- idea开发web项目框架失效和无法启动问题
不会配置idea的javaweb环境的小伙伴可以点击此链接 idea最新版,配置javaweb环境 很多小伙伴用idea开发web项目可能会出现所有代码都写对了但是无论如何都没法运行的情况,eclip ...
- Win10 安装 Python3 (上)
Python3 For Windows 10 installer 参考 The full installer 安装 随后可以看到,installer 在用户环境变量PATH中,添加了三项: 卸载 使用 ...
- WEB安全防护相关响应头(上)
WEB 安全攻防是个庞大的话题,有各种不同角度的探讨和实践.即使只讨论防护的对象,也有诸多不同的方向,包括但不限于:WEB 服务器.数据库.业务逻辑.敏感数据等等.除了这些我们惯常关注的方面,WEB ...