题目大意:

给定一个\(n\)个数的序列\(a\),给定一个\(x\),其中\(a\)数组可以进行顺序的调换,每一个\(a_i\)都能使$x=x \mod a_i \(,
求最后经过一系列计算后的\)y\(,满足\)abs(x-y)$尽可能小,并求出方案数

QwQ 哇,一看到这个题。说实话,没什么好的思路。

也就发现了几个性质:

1.最后的\(y\)一定小于最小的\(a_i\)

2.如果存在一个\(a_i<a_j\),且\(i<j\) 那么\(a_j\)就没有任何作用了,对答案没有任何一点影响

那我们不妨将整个数组从大到小排序

先考虑第一问:

我们定义\(f[i][j]\)表示,考虑到第\(i\)个数,当前的值为\(j\)是否可行,首先我们令\(f[0][x]=1\),然后对于当前的\(i\),我们可以选择用它 ,也可以选择不用(换句话说,就是放一个比它更小的在前面,就可以实现不使用它了)但是后者需要满足\(i\ !=n\) 然后分别对应转移即可

这里有部分分的代码!

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath> using namespace std; const int maxn = 1010;
const int maxx = 5010; int f[maxn][maxx];
int a[maxn];
int n,x; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} bool cmp(int a,int b)
{
return a>b;
} int main()
{
n=read(),x=read();
for (int i=1;i<=n;i++) a[i]=read();
sort(a+1,a+1+n,cmp);
f[0][x]=1;
for (int i=1;i<=n;i++)
{
for (int j=0;j<=x;j++) f[i][j%a[i]]=max(f[i][j%a[i]],f[i-1][j]);
if (i!=n) for (int j=0;j<=x;j++) f[i][j]=max(f[i][j],f[i-1][j]);
}
for (int i=x;i>=0;i--) if (f[n][i]) {
cout<<i<<endl<<0<<endl;
return 0;
}
return 0;
}

那么加上第二问呢,该怎么解决呢。

看了一些排列组合的题解,不过并不知道怎么做呀。倒是有一种更好理解的方法QwQ

我们令\(g[i][j]\)表示处理第\(i\)个数,当前值是\(j\)的方案数

如果我们使用这个点\(g[i][j \mod a_i ]+=g[i-1][j]\)(说明他待在当前的位置,且后面比他小的位置,都在他后面

如果不用\(g[i][j]=g[i-1][j]*(n-i)\) (表示他可以和他之后的任意一个比他小的数换位置,都不会使用这个点)(或者理解为他有\(n-i\)个空隙可以插进去

直接上代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath> using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 1010;
const long long mod = 998244353; int f[maxn][5010];
long long g[maxn][5010];
int n,x;
int a[maxn]; bool cmp (int a,int b)
{
return a>b;
} int main()
{
scanf("%d%d",&n,&x);
for (int i=1;i<=n;i++) a[i]=read();
f[0][x]=1;
g[0][x]=1;
sort(a+1,a+1+n,cmp);
for (int i=1;i<=n;i++)
{
for (int j=0;j<=x;j++) f[i][j%a[i]]=max(f[i][j%a[i]],f[i-1][j]),g[i][j%a[i]]=(g[i][j%a[i]]+g[i-1][j])%mod;
if (i!=n) for (int j=0;j<=x;j++) f[i][j]=max(f[i][j],f[i-1][j]),g[i][j]=(g[i][j]+g[i-1][j]%mod*(long long
)(n-i)%mod)%mod;
}
for(int i=a[n];i>=0;i--)
{
if (f[n][i])
{
cout<<i<<endl;
cout<<g[n][i]<<endl;
return 0;
}
}
return 0;
}

uoj22 外星人(dp)的更多相关文章

  1. [UOJ22]外星人

    题解 首先可以发现有效果的\(a_i\)大小一定是递减的,而且一定小于等于当前值 所以我们可以从大到小考虑每个\(a_i\),当确定了一个有效果的\(a_i\)时,\((a_i,x]\)的数都可以随意 ...

  2. #YCB#待做题目与填坑资料

    各种填坑资料(qwq) 主席树(by YL)戳 树套树(by ZSY)戳 不要问我这些题咋来的(查大佬的水表呗) 题目列表: [HDU5977]Garden of Eden [BZOJ2752][HA ...

  3. UOJ22. 【UR #1】外星人【DP】【思维】

    LINK 题目大意 给你一个序列和一个值x 问你用某种方式对序列安排顺序之后一次对x取mod膜的最大值和方案数 首先发现一个性质 一个数之后所有比它大的数都没有贡献 考虑怎么利用这个性质? 就可以从小 ...

  4. 【uoj#22】[UR #1]外星人 组合数学+dp

    题目描述 给你一个长度为 $n$ 的序列 $\{a_i\}$ 和一个数 $x$ ,对于任意一个 $1\sim n$ 的排列 $\{p_i\}$ ,从 $1$ 到 $n$ 依次执行 $x=x\ \tex ...

  5. UOJ22 UR #1外星人(动态规划)

    https://www.cnblogs.com/Gloid/p/10629779.html 这一场的D. #include<bits/stdc++.h> using namespace s ...

  6. uoj22 【UR #1】外星人

    link 题意: 给一个长为n的序列a[],现在有一个初始值m,问一个1~n的排列p[],满足将m对a[p[i]]顺次取模后得到的值最大,输出最大值和方案数. $n,m\leq 5\times 10^ ...

  7. TYVJ P1024 外星人的密码数字

    做题记录:2016-08-16 20:09:30 描述     XXXX年突然有外星人造访,但大家语言不通,不过科学家们经过研究发现外星人用26个英文字母组成的单词中最长不降子序列的长度来表述数字,且 ...

  8. [DP之普通系列]

    noip快要来了 要练练dp 难度也挺接近 还是挺好的 [Usaco2013 Nov]Pogo-Cow 这一道题要下一段大于这一段 所以的话我们就要记录每一段的状态 F[i,j]=F[j,k]+A[i ...

  9. Codeforces Gym100543L Outer space invaders 区间dp 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF-Gym100543L.html 题目传送门 - CF-Gym100543L 题意 $T$ 组数据. 有 $n ...

随机推荐

  1. nginx《一安装》

    linux上nginx相关 wget https://nginx.org/download/nginx-1.14.1.tar.gz tar -zxvf nginx-1.14.1.tar.gz ./co ...

  2. go defer关键字使用规则

    defer 用于延迟函数的调用,每次defer都会把一个函数压入栈中,函数返回前再把延迟的函数取出并执行 数据结构 type _defer struct { sp uintptr //函数栈指针 pc ...

  3. canvas——动画实例

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. 神舟G7-CT7NK 安装tensorflow-gpu

    参考https://www.cnblogs.com/xbit/p/9768238.html 直接安装,运行keras mnist数字识别报错: Could not create cudnn handl ...

  5. python常用工具库介绍

    Numpy:科学计算 HOME:  http://www.numpy.org/ NumPy is the fundamental package for scientific computing wi ...

  6. Tomcat集群Cluster实现原理

    1.Tomcat集群         Tomcat集群的问题之一是如何处理Session,Session是有状态的,请求到了Tomcat,后续流传是要根据上下文(Context)来进行的.我们可以改造 ...

  7. 【详细、开箱即用】.NET企业微信回调配置(数据回调URL和指令回调URL验证)

    前言: 前段时间因为公司业务需求,需要将微信小程序与企业微信对接通,也就是把小程序绑定到对应的企业微信账号下,在该企业微信的用户可以将该小程序绑定到工作台中,然后可以在工作台中打开该小程序并授权.不过 ...

  8. Python - 导入的位置

    导入的是什么 导入是将 Python 的一些功能函数放到当前的脚本中使用 不导入的功能无法直接在当前脚本使用(除了 python 自带的内置函数) Python 有很多第三方功能,假设想要使用,都必须 ...

  9. 为何GRE可以封装组播报文而IPSEC却不行?

    Author       : Email         : vip_13031075266@163.com Date          : 2021.01.24 Copyright : 未经同意不得 ...

  10. weblogic获取应用目录路径

    一.背景说明 在项目开发过程中,本地开发用的windows+tomcat,到了生产中,就成了linux+weblogic.部署工程后,应用报错,显示获取应用目录返回为null. 在网上查阅资料,发现在 ...