纯净Ubuntu16安装CUDA(9.1)和cuDNN
欢迎访问我的GitHub
https://github.com/zq2599/blog_demos
内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;
本篇概览
- 自己有一台2015年的联想笔记本,显卡是GTX950M,已安装ubuntu 16.04 LTS桌面版,为了使用其GPU完成deeplearning4j的训练工作,自己动手安装了CUDA和cuDNN,在此将整个过程记录下来,以备将来参考,整个安装过程分为以下几步:
- 准备工作
- 安装Nvidia驱动
- 安装CUDA
- 安装cuDNN
特别问题说明
按照一般步骤,在安装完Nvidia显卡驱动后,会提示对应的CUDA版本,接下来按照提示的版本安装CUDA,例如我这里提示的是11.2,正常情况下,我应该安装11.2版本的CUDA
但是我选择9.1版本就行安装,因为之前的开发中发现deeplearning4j使用了11.2的SDK后,启动应用会有ClassNotFound的错误,此问题至今未修复(惭愧,欣宸水平如此之低...),因此,我在Nvidia驱动提示11.2版本的情况下,依然安装了9.1版本,后来在此环境运行deeplearning4j应用一切正常
如果您没有我这类问题,完全可以按照驱动指定的版本来安装CUDA,具体的操作步骤稍后会详细说到;
准备工作
接下来的操作,除了在网页下载,其余都是ssh远程连接到ubuntu机器操作的,ssh登录的帐号为普通帐号,并非root
如果已有驱动,请先删除:
sudo apt-get remove --purge nvidia*
- 禁用nouveau驱动(很重要),用vi打开文件/etc/modprobe.d/blacklist.conf,在尾部增加以下内容,然后保存退出:
blacklist nouveau
blacklist lbm-nouveau
options nouveau modeset=0
alias nouveau off
alias lbm-nouveau off
- 关闭nouveau:
echo options nouveau modeset=0 | sudo tee -a /etc/modprobe.d/nouveau-kms.conf
- 更新initramfs:
update-initramfs -u
执行reboot重启电脑
重启后,执行以下命令,应该不会有任何输出,证明nouveau已经禁用:
lsmod|grep nouveau
- 获取Kernel source:
sudo apt-get install linux-source
- 安装过程中显示信息如下图:
- 根据上图红框中的信息,可知内核版本号为,于是执行以下命令:
sudo apt-get install linux-headers-4.4.0-210-generic
下载和安装Nvidia驱动
- 访问Nvidia网站,地址https://www.nvidia.cn/Download/index.aspx?lang=cn,然后选择对应的显卡和操作系统,我的选择如下图所示:
- 点击上图搜索按钮后,进入下图页面,点击下载:
下载得到的文件名为NVIDIA-Linux-x86_64-460.84.run
关闭图形页面:
sudo service lightdm stop
- 给驱动文件增加可执行权限:
sudo chmod a+x NVIDIA-Linux-x86_64-460.84.run
- 开始安装:
sudo ./NVIDIA-Linux-x86_64-460.84.run -no-x-check -no-nouveau-check -no-opengl-files
- 遇到下图,选择红框:
遇到下图,直接回车:
恢复图形页面:
sudo service lightdm start
- 执行命令nvidia-smi,如果驱动安装成功,会显示以下内容:
will@lenovo:~/temp/202106/20$ nvidia-smi
Sun Jun 20 09:02:11 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.84 Driver Version: 460.84 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 GeForce GTX 950M Off | 00000000:01:00.0 Off | N/A |
| N/A 41C P0 N/A / N/A | 0MiB / 4046MiB | 1% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
- 从上述内容可见CUDA Version: 11.2表示该驱动对应的CUDA版本应该是11.2,正如前面所说,我这边遇到了问题,因此接下来会安装9.1版本,但是您可以选择安装11.2
安装CUDA
- 浏览器访问https://developer.nvidia.com/cuda-toolkit-archive,点击红框中的链接:
- 如下图,下载Linux版本:
- 继续选择x86_64:
- 选择具体的Linux版本及其版本号:
- 要下载的东西不少,一个安装程序和三个补丁:
- 上述四个文件的下载地址整理如下:
https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/local_installers/cuda_9.1.85_387.26_linux.run?P0Ntu_6NLtuuEMm6fJRk1W5vl4KM7oaT1oFW870zKJ-zDw2ckKntFLOE6klRJfw2CmTa8z3Q390_6urlgc6LqjoqlIFW9gvfvDCusnINYplLaw1u8lRY8R4oVNtpNzaXU4BQcHjvdb6c6rjq20dktCcRd4640woXt1yHmD95v1Du7wdBBXq2eOY
https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/patches/1/cuda_9.1.85.1_linux.run?yeXf_7wIGlHAUw--E_YVLQZRgXv0x2i043woJVY-ydXU5Kyhc-eYQf5JmL-4mvYmlvPYCEc5RhT2sDWscX20CJbdOwpkt30kWb9vx8E4oIlajDQ3MVPvXdiKKsIOBUx-h0q0N0jSkNn80VMhW-nk8jwvRY_e6MuFzqWBaPk
https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/patches/2/cuda_9.1.85.2_linux.run?5jGZxNigaOJkaaPbMagjhSW7ebQvYGyYoqe2vBxZ1eV8qp2BzXJLxIPgAo11UgWhORirQkdJGq5b8eFh4aShBVUTmuPaasvRiMCKDZw5yjjIobGQrCEyU-LFO59AbrRER57Mxa0T1Sc97fC80IOZq8Ox2repjn7A3oYVgd8
https://developer.download.nvidia.cn/compute/cuda/9.1/secure/Prod/patches/3/cuda_9.1.85.3_linux.run?CxWimJTC-XROYihig-UZmH62odbJInf1fmxTZ_bsW1nQ0Zz5cL5r8qLmlMR_1j2rVhk3j8Z5lS6dpArt8frjGHH2MeVn5TefMoclam8udm-RSMMmqHXYE66hHN2D0drVEdtCwe8ZrEIYb2rpucaz9svCFE8Z319mge4Ju94
下载完毕后,执行命令chmod a+x *.run为上述四个文件增加可执行权限
安装CUDA:
sudo sh cuda_9.1.85_387.26_linux.run
- 遇到license时,像是用vi工具那样,输入":",再输入"q"回车,就能跳过license阅读,执行真正的安装操作了:
- 接下来是一系列提问,每一个提问的回答如下图,千万注意红框中的问题一定要选择n:
- 安装完成后输出以下内容:
Installing the CUDA Toolkit in /usr/local/cuda-9.1 ...
Missing recommended library: libGLU.so
Missing recommended library: libX11.so
Missing recommended library: libXi.so
Missing recommended library: libXmu.so
Missing recommended library: libGL.so
Installing the CUDA Samples in /home/will ...
Copying samples to /home/will/NVIDIA_CUDA-9.1_Samples now...
Finished copying samples.
===========
= Summary =
===========
Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-9.1
Samples: Installed in /home/will, but missing recommended libraries
Please make sure that
- PATH includes /usr/local/cuda-9.1/bin
- LD_LIBRARY_PATH includes /usr/local/cuda-9.1/lib64, or, add /usr/local/cuda-9.1/lib64 to /etc/ld.so.conf and run ldconfig as root
To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-9.1/bin
Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-9.1/doc/pdf for detailed information on setting up CUDA.
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 9.1 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
sudo <CudaInstaller>.run -silent -driver
Logfile is /tmp/cuda_install_13425.log
- 打开文件~/.bashrc,在尾部增加以下两行(LD_LIBRARY_PATH如果已经存在,请参考PATH的写法改成追加):
export PATH=/usr/local/cuda-9.1/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-9.1/lib64
执行命令source ~/.bashrc使配置生效
执行命令su -切换到root帐号,执行以下命令(不要用sudo,而是切到root帐号):
sudo echo "/usr/local/cuda-9.1/lib64" >> /etc/ld.so.conf
- 再以root身份执行以下命令:
ldconfig
执行命令exit退出root身份,现在又是普通帐号的身份了
执行命令nvcc -V检查CUDA版本,注意参数V是大写:
will@lenovo:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Nov__3_21:07:56_CDT_2017
Cuda compilation tools, release 9.1, V9.1.85
- 安装第一个补丁:
sudo sh cuda_9.1.85.1_linux.run
- 安装第二个补丁:
sudo sh cuda_9.1.85_387.26_linux.run
- 安装第三个补丁:
sudo sh cuda_9.1.85_387.26_linux.run
安装cuDNN
- 按提示登录,如果没有帐号请注册一个,登录后进入下载页面,需要点击下图红框位置才有能见到老版本:
- 选择与CUDA匹配的版本:
- 下载后解压,得到文件夹cuda,然后执行以下命令:
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
- 执行检查确认的命令cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2,如果安装顺利会有以下输出:
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 1
#define CUDNN_PATCHLEVEL 3
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#include "driver_types.h"
- 至此,Ubuntu16安装CUDA(9.1)和cuDNN已经完成了,希望能给您一些参考。
你不孤单,欣宸原创一路相伴
欢迎关注公众号:程序员欣宸
微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界...
https://github.com/zq2599/blog_demos
纯净Ubuntu16安装CUDA(9.1)和cuDNN的更多相关文章
- Ubuntu 18.04安装 CUDA 10.1 、cuDNN 7.6.5、PyTorch1.3
转载请注明出处 BooTurbo https://www.cnblogs.com/booturbo/p/11834661.html 安装平台及环境 CPU:i9-9900k桌面级 GPU:RTX 2 ...
- caffe安装:ubuntu16.04 + opencv2.4 + python 2.7+ CUDA 8.0 RC + CuDNN 5.0
官方教程:http://caffe.berkeleyvision.org/install_apt.html 主要参考教程: https://github.com/BVLC/caffe/wiki/Ubu ...
- Ubuntu系统---Ubuntu16.04进不了界面(登录界面循环,密码正确)(一体化安装(CUDA +NVIDIA驱动)+ cuDNN)
Ubuntu16.04进不了界面(登录界面循环,密码正确)(一体化安装(CUDA +NVIDIA驱动)+ cu ...
- 深度学习环境搭建(ubuntu16.04+Titan Xp安装显卡驱动+Cuda9.0+cudnn+其他软件)
一.硬件环境 ubuntu 16.04LTS + windows10 双系统 NVIDIA TiTan XP 显卡(12G) 二.软件环境 搜狗输入法 下载地址 显卡驱动:LINUX X64 (AMD ...
- 服务器重装和配置:Ubuntu16.04 + Anaconda3 + GTX1080驱动 + CUDA8 + cuDNN + 常用工具安装
前一篇[基于Ubuntu16.04的GeForce GTX 1080驱动安装,遇到的问题及对应的解决方法]是在机器原有系统上安装GPU驱动,后来决定备份数据后重装系统,让服务器环境更干净清爽. 1.安 ...
- 记录下自己安装cuda以及cudnn
之前已经装过一次了,不过没有做记录,现在又要翻一堆博客安装,长点记性,自己记录下. 环境 ubuntu16.04 python2.7 商家送过来时候已经装好了显卡驱动,所以省去了一大麻烦. 剩下的就是 ...
- ubuntu16.04+Titan Xp安装显卡驱动+Cuda9.0+cudnn
硬件环境 ubuntu 16.04LTS + windows10 双系统 NVIDIA TiTan XP 显卡(12G) 软件环境 搜狗输入法 显卡驱动:LINUX X64 (AMD64/EM64T) ...
- (原)Ubuntu16中安装cuda toolkit
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5655957.html 参考网址: https://devtalk.nvidia.com/default ...
- ubuntu16.04 NVIDIA CUDA8.0 以及cuDNN安装
下载CUDA 官网下载按照自己的实际情况进行选择,下载合适的版本. 官方安装指南 注意这里下载的是cuda8.0的runfile(local)文件. 安装CUDA 下载完成后,解压到当前目录,切换到该 ...
随机推荐
- Float浮动(慕课网学习笔记)
float浮动 属性:值 意义 float:left 左浮动 float:right 右浮动 float:none 不浮动 float:inherit 继承父元素浮动属性,若父元素没有浮动属性则失效 ...
- 分布式链路追踪系统Sleuth和ZipKin
1.微服务下的链路追踪讲解和重要性 简介:讲解什么是分布式链路追踪系统,及使用好处 进行日志埋点,各微服务追踪. 2.SpringCloud的链路追踪组件Sleuth 1.官方文档 http://cl ...
- 图解Java 垃圾回收机制
摘要: Java技术体系中所提倡的 自动内存管理 最终可以归结为自动化地解决了两个问题:给对象分配内存 以及 回收分配给对象的内存,而且这两个问题针对的内存区域就是Java内存模型中的 堆区.关于对象 ...
- Python - 面向对象编程 - @property
前言 前面讲到实例属性的时候,我们可以通过 实例对象.实例属性 来访问对应的实例属性 但这种做法是不建议的,因为它破坏了类的封装原则 正常情况下,实例属性应该是隐藏的,只允许通过类提供的方法来间接实现 ...
- indexedDB数据库完整创建流程
1.打开数据库 使用 IndexedDB 的第一步是打开数据库,使用indexedDB.open()方法 var request = window.indexedDB.open(databaseNam ...
- Confluence7.4安装并破解汉化教程
Confluence是一款由JAVA编写用于企业知识库管理协同软件,多用于构建企业内部WIKI,支持多人协作,共享信息等. 当前系统环境Centos7.9,内存至少2G以上,数据库采用MySQL5.7 ...
- MySQL读写IO的操作过程解析
数据库作为存储系统,所有业务访问数据的操作都会转化为底层数据库系统的IO行为(缓存系统也可以当做是key-value的数据库),本文主要介绍访问MySQL数据库的IO流程以及IO相关的参数. 一.My ...
- 手写个jsonp
原生jsonp具体实现 先上代码: //http://www.baidu.com?aa=11&callback=my_jsonp04349289664328899 var jsonp = fu ...
- Nginx的高级使用
1.概述 之前介绍过Nginx的简单使用,今天来聊聊Nginx的一些高级使用. 2.使用Nginx解决跨域问题 当公司存在多个域名时,两个不同的域名相互访问就会存在跨域问题. 或者在进行前端开发时,通 ...
- Python实现Thrift Server
近期在项目中存在跨编程语言协作的需求,使用到了Thrift.本文将记录用python实现Thrift服务端的方法. 环境准备 根据自身实际情况下载对应的Thrift编译器,比如我在Windows系统上 ...