题意:

      给你一个有向图,每个点上有一个权值,可正可负,然后给你一些链接关系,让你找到一个起点,从起点开始走,走过的边可以在走,但是拿过权值的点就不能再拿了,问最多能拿到多少权值?

思路:

      首先我们考虑一个简单的问题,这个题目的负权值点肯定不拿,对于一个环(应该说是一个强连通分量)来说要拿可以一下全拿走(这个自己黄画画),那么一个环的价值是多少?就是这个强连通分量里所有正权值的和,这样我们一边强连通缩点,缩点之后变成了一个无环的有向图,然后在在上面跑最长路就行了,还有提醒一点,题目说的起点不固定,这个也好处理,我们只要在虚拟出来一个起点,到所有点的权值都是0就行了,这样就能一遍spfa搞定了,千万别跑n遍spfa那样太无脑了。

虽然简单,但感觉这个题目还不错,挺有实际意义的。

#include<stack>

#include<queue>

#include<stdio.h>

#include<string.h>

#define N_node 30000 + 10

#define N_edge 200000 + 50

#define INF 1000000000

using namespace std;

typedef struct

{

    int to ,cost ,next;

}STAR;

typedef struct

{

    int a ,b;

}EDGE;

EDGE E[N_edge];

STAR E1[N_edge] ,E2[N_edge];

int list1[N_node] ,list2[N_node] ,tot;

int Belong[N_node] ,mark[N_node] ,cont;

int s_x[N_node] ,get[N_node] ,cost[N_node];

stack<int>sk;

void add(int a ,int b ,int c)

{

    E1[++tot].to = b;

    E1[tot].cost = c;

    E1[tot].next = list1[a];

    list1[a] = tot;

    E2[tot].to = a;

    E2[tot].cost = c;

    E2[tot].next = list2[b];

    list2[b] = tot;

}

void DFS1(int s)

{

    mark[s] = 1;

    for(int k = list1[s] ;k ;k = E1[k].next)

    if(!mark[E1[k].to]) DFS1(E1[k].to);

    sk.push(s);

}

void DFS2(int s)

{

    mark[s] = 1;

    Belong[s] = cont;

    for(int k = list2[s] ;k ;k = E2[k].next)

    if(!mark[E2[k].to]) DFS2(E2[k].to);

}

void Spfa(int s ,int n)

{

    memset(mark ,0 ,sizeof(mark));

    for(int i = 0 ;i <= n ;i ++)

    s_x[i] = -INF;

    queue<int>q;

    q.push(s);

    mark[s] = 1;

    s_x[s] = 0;

    while(!q.empty())

    {

        int xin ,tou;

        tou = q.front();

        q.pop();

        mark[tou] = 0;

        for(int k = list1[tou] ;k ;k = E1[k].next)

        {

            xin = E1[k].to;

            if(s_x[xin] < s_x[tou] + E1[k].cost)

            {

                s_x[xin] = s_x[tou] + E1[k].cost;

                if(!mark[xin])

                {

                    mark[xin] = 1;

                    q.push(xin);

                }

            }

        }

    }

}

int main ()

{

    int n ,m ,i ,a ,b;

    while(~scanf("%d %d" ,&n ,&m))

    {

        for(i = 1 ;i <= n ;i ++)

        scanf("%d" ,&cost[i]);

        memset(list1 ,0 ,sizeof(list1));

        memset(list2 ,0 ,sizeof(list2));

        tot = 1;

        for(i = 1 ;i <= m ;i ++)

        {

            scanf("%d %d" ,&a ,&b);

            a ++ ,b ++;

            add(a ,b ,1);

            E[i].a = a ,E[i].b = b;

        }

        while(!sk.empty()) sk.pop();

        memset(mark ,0 ,sizeof(mark));

        for(i = 1 ;i <= n ;i ++)

        if(!mark[i]) DFS1(i);

        memset(mark ,0 ,sizeof(mark));

        cont = 0;

        while(!sk.empty())

        {

            int to = sk.top();

            sk.pop();

            if(mark[to]) continue;

            ++cont;

            DFS2(to);

        }

        memset(get ,0 ,sizeof(get));

        for(i = 1 ;i <= n ;i ++)

        if(cost[i] >= 0) get[Belong[i]] += cost[i];

        memset(list1 ,0 ,sizeof(list1));

        memset(list2 ,0 ,sizeof(list2));

        tot = 1;

        for(i = 1 ;i <= n ;i ++)

        add(0 ,i ,get[i]);

        for(i = 1 ;i <= m ;i ++)

        {

            a = Belong[E[i].a];

            b = Belong[E[i].b];

            if(a == b) continue;

            add(a ,b ,get[b]);

        }

        Spfa(0 ,n);

        int ans = 0;

        for(i = 1 ;i <= n ;i ++)

        if(ans < s_x[i]) ans = s_x[i];

        printf("%d\n" ,ans);

    }

    return 0;

}

POJ3160强连通+spfa最长路(不错)的更多相关文章

  1. 【bzoj1179】[Apio2009]Atm Tarjan缩点+Spfa最长路

    题目描述 输入 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号.接下来N行,每 ...

  2. bzoj1179: [Apio2009]Atm 【缩点+spfa最长路】

    题目传送门 Description Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruser i 银行的 ATM 取款机.令人奇怪的是,S ...

  3. XYZZY spfa 最长路 判环

    题意: 有n个点  m条边  每个边有权值 一开始有一百血  每次经过一条路都会加上其权值 判断是否能够到达n 显然  有正环的时候肯定能够到达 最短路好题!!!!!!! 显用folyed判断是否联通 ...

  4. poj 1932 XYZZY(spfa最长路+判断正环+floyd求传递闭包)

    XYZZY Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4154   Accepted: 1185 Description ...

  5. HDU 6201 2017沈阳网络赛 树形DP或者SPFA最长路

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6201 题意:给出一棵树,每个点有一个权值,代表商品的售价,树上每一条边上也有一个权值,代表从这条边经过 ...

  6. Tarjan缩点+Spfa最长路【p3627】[APIO2009] 抢掠计划

    Description Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruseri 银行的 ATM 取款机.令人奇怪的是,Siruseri ...

  7. [BZOJ1663] [Usaco2006 Open]赶集(spfa最长路)

    传送门 按照时间t排序 如果 t[i] + map[i][j] <= t[j],就在i和j之间连一条边 然后spfa找最长路 #include <queue> #include &l ...

  8. [luogu3627 APIO2009] 抢掠计划 (tarjan缩点+spfa最长路)

    传送门 Description Input 第一行包含两个整数 N.M.N 表示路口的个数,M 表示道路条数.接下来 M 行,每行两个整数,这两个整数都在 1 到 N 之间,第 i+1 行的两个整数表 ...

  9. BZOJ 3887/Luogu P3119: [Usaco2015 Jan]Grass Cownoisseur (强连通分量+最长路)

    分层建图,反向边建在两层之间,两层内部分别建正向边,tarjan缩点后,拓扑排序求一次1所在强连通分量和1+n所在强联通分量的最长路(长度定义为路径上的强联通分量内部点数和).然后由于1所在强连通分量 ...

随机推荐

  1. 为什么要从 Linux 迁移到 BSD 4

    为什么要从 Linux 迁移到 BSD 4 许可证问题 Linux GPL 许可证对开发者的要求比较严格,它是一种开源的反模式,因为它强制发布所有修改过的源代码,并且阻止其他开源项目的集成,例如 GP ...

  2. Java方法:命令行传参,重载,可变参数,递归

    Java方法:System.out.println()//系统类.out对象.输出方法Java方法是语句的集合,他们在一起执行一个功能方法是解决一类问题的步骤的有序组合方法包含于类或对象中方法在程序中 ...

  3. python数据分析三剑客基础之matpoltlib初解

    一.什么是matplotlib? python的底层绘图工具,主要做数据可视化图表,源自matplot. 二.为什么要学matplotlib? 1.它能将数据进行可视化,更直观的呈现出来 2.它能让数 ...

  4. 2019 GDUT Rating Contest III : Problem D. Lemonade Line

    题面: D. Lemonade Line Input file: standard input Output file: standard output Time limit: 1 second Memo ...

  5. 程序员必须搞懂的20个Java类库和API

    本文总结了日志.JSON解析.单测.XML解析.字节码处理.数据库连接池.集合类.邮件.加密.嵌入式SQL数据库.JDBC故障诊断以及序列化等20个方面的常用类库.都是你日常开发经常可能要用到的,现在 ...

  6. python之模块与类库

    什么是模块 模块是一组类,函数,方法所组成的.这些类都储存在文本文件中..py是python程序代码中的扩展名,模块可能是c或者python写的.模块的扩展名可以是.py或者是.pyc(经过编译的.p ...

  7. 【linux】驱动-1-环境准备

    目录 前言 1. 开发环境搭建 1.1 环境准备 1.1.1 安装工具 1.1.2 编译内核 1.1.2.1 获取内核源码 1.1.2.2 编译内核 1.2 内核驱动模块编译和加载 1.2.1 hel ...

  8. python学习9 函数的基础知识

    1.函数的定义 def  func(): 2.函数的调用 func() 3.函数的返回值 #1.没有返回值 # (1)不写return # (2)只写return后面的代码不在继续执行,返回空,代表结 ...

  9. 前端开发:基于cypress的自动化实践

    作为一个伪开发,在一个平台项目中负责前端的开发工作,开发框架为vue,本文我会站在前端开发的角度介绍,我是如何使用cypress的. [x] 如何在vue中使用cypress [x] 如何运行cypr ...

  10. 2021华为软件精英挑战赛(C/C++实现)-苦行僧的实现过程

    下面给出2021华为软件精英挑战赛参与的整个过程,虽然成绩不是很好,但是也是花了一些时间的,希望后面多多学习,多多进步. 代码已经上传到了Github上:https://github.com/myFr ...