\(\mathcal{Description}\)

  Link.

  给定一个无并列语句的多重循环,每个变量取值的左端点只能是 \(1\) 或已定义的变量;右端点只能是 \(n\) 或已定义的变量。求循环语句关于 \(n\) 的复杂度以及常数。

  循环语句数量 \(m<20\)。

\(\mathcal{Solution}\)

  按变量的偏序关系建图,缩掉 SCC——它们的取值必然相等,设有 \(s\) 个 SCC,那么循环的复杂度显然是 \(\mathcal O(n^s)\),难点在于求常数。

  第一步转化是平凡的:我们可以钦定变量间的严格偏序而忽略取等的情况。这是因为当某两个变量取等时,不会对计算次数的最高次产生贡献。此外,我们还能得知在变量都取 \([1,n]\),但被限制偏序时,一共有 \(s!\binom{n}{s}\) 种取值组。

  第二步,利用缩点得到的 DAG 的性质,可以发现:在严格偏序意义下,满足 DAG 限制的变量组数量等于对 DAG 拓扑排序的方案数。 证明是平凡的。设方案数为 \(c\),由此可知 \(\frac{c}{s!}\) 即循环的常数因子。

  求解复杂度为 \(\mathcal O(2^mm^2)\),瓶颈是状压求拓扑方案数。也许能优化 awa。(

\(\mathcal{Code}\)

/*+Rainybunny+*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL; inline void chkmin( int& u, const int v ) { v < u && ( u = v ); }
inline LL gcd( const LL u, const LL v ) { return v ? gcd( v, u % v ) : u; } const int MAXN = 20;
int n, adj[MAXN + 5], vad[MAXN + 5], ref[256];
int scc, dfc, dfn[MAXN + 5], low[MAXN + 5], bel[MAXN + 5];
LL f[1 << MAXN]; inline void tarjan( const int u ) {
static int stk[MAXN + 5], top;
static bool instk[MAXN + 5];
instk[stk[++top] = u] = true, dfn[u] = low[u] = ++dfc;
rep ( v, 0, n - 1 ) if ( adj[u] >> v & 1 ) {
if ( !dfn[v] ) tarjan( v ), chkmin( low[u], low[v] );
else if ( instk[v] ) chkmin( low[u], dfn[v] );
}
if ( dfn[u] == low[u] ) {
int v;
do instk[v = stk[top--]] = false, bel[v] = scc; while ( v != u );
++scc;
}
} int main() {
freopen( "fygon20.in", "r", stdin );
freopen( "fygon20.out", "w", stdout ); scanf( "%d%*c", &n ), --n;
if ( !n ) return puts( "0 1/1" ), 0;
rep ( i, 0, n - 1 ) {
static char str[200]; int st = i << 2;
scanf( "%[^\n]%*c", str ), ref[str[st + 4]] = i;
if ( str[st + 15] != '1' ) adj[i] |= 1 << ref[str[st + 15]];
if ( str[st + 18] != 'n' ) adj[ref[str[st + 18]]] |= 1 << i;
}
rep ( i, 0, n - 1 ) if ( !dfn[i] ) tarjan( i );
rep ( u, 0, n - 1 ) rep ( v, 0, n - 1 ) {
if ( adj[u] >> v & 1 && bel[u] != bel[v] ) {
vad[bel[u]] |= 1 << bel[v];
}
} f[0] = 1;
rep ( S, 0, ( 1 << scc ) - 2 ) {
rep ( u, 0, scc - 1 ) if ( ~S >> u & 1 ) {
bool flg = true;
rep ( v, 0, scc - 1 ) {
flg &= !( v != u && ~S >> v & 1 && vad[v] >> u & 1 );
if ( !flg ) break;
}
if ( flg ) f[S | 1 << u] += f[S];
}
}
LL fac = 1;
rep ( i, 1, scc ) fac *= i;
LL d = gcd( fac, f[( 1 << scc ) - 1] );
printf( "%d %lld/%lld\n", scc, f[( 1 << scc ) - 1] / d, fac / d );
return 0;
}

Solution -「NWRRC 2017」「洛谷 P7024」Fygon 2.0的更多相关文章

  1. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  2. [CodePlus 2017 11月赛&洛谷P4058]木材 题解(二分答案)

    [CodePlus 2017 11月赛&洛谷P4058]木材 Description 有 n棵树,初始时每棵树的高度为 Hi ,第 i棵树每月都会长高 Ai.现在有个木料长度总量为 S的订单, ...

  3. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  4. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  5. Solution -「POI 2010」「洛谷 P3511」MOS-Bridges

    \(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...

  6. Solution -「APIO 2016」「洛谷 P3643」划艇

    \(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...

  7. 「洛谷4197」「BZOJ3545」peak【线段树合并】

    题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...

  8. 「洛谷3338」「ZJOI2014」力【FFT】

    题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...

  9. 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】

    题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...

随机推荐

  1. nuxt中iview按需加载配置

    在plugins/iview.js中修改 初始代码如下 import Vue from 'vue' import iView from 'iview' import locale from 'ivie ...

  2. SYCOJ27猴子选大王

    题目-猴子选大王 (shiyancang.cn) 一.出队顺序Description有M个人,其编号分别为1-M.这M个人按顺序排成一个圈.现在给定一个数N,从第一个人开始依次报数,数到N的人出列,然 ...

  3. 基于Typescript和Jest刷题环境搭建与使用

    写在前面 前几个月在公司用vue3和ts写项目,想巩固一下基础,于是我想起了去年基于JavaScript和Jest搭建的刷题环境,不如,给它搞个加强版,结合Typescript和Jest 搞一个刷题环 ...

  4. 园子的推广博文:欢迎收看 Apache Flink 技术峰会 FFA 2021 的视频回放

    园子专属收看链接:https://developer.aliyun.com/special/ffa2021/live#?utm_content=g_1000316459 Flink Forward 是 ...

  5. 【Java常用类】Calendar

    Calendar日历类 实例化 方法一 创建其子类**(GregorianCalendar)**的对象 方法二 调用其静态方法getInstance() Calendar instance = Cal ...

  6. Android官方文档翻译 三 1.1Creating an Android Project

    Creating an Android Project 创建一个Android项目 An Android project contains all the files that comprise th ...

  7. JS定时器不可靠的原因及解决方案

    前言 在工作中应用定时器的场景非常多,但你会发现有时候定时器好像并没有按照我们的预期去执行,比如我们常遇到的setTimeout(()=>{},0)它有时候并不是按我们预期的立马就执行.想要知道 ...

  8. 《剑指offer》面试题56 - II. 数组中数字出现的次数 II

    问题描述 在一个数组 nums 中除一个数字只出现一次之外,其他数字都出现了三次.请找出那个只出现一次的数字. 示例 1: 输入:nums = [3,4,3,3] 输出:4 示例 2: 输入:nums ...

  9. rocketmq实现延迟队列精确到秒级实现(总结编)

    前言篇: 为了节约成本,决定通过自研来改造rocketmq,添加任意时间延迟的延时队列,开源版本的rocketmq只有支持18个等级的延迟时间, 其实对于大部分的功能是够用了的,但是以前的项目,全部都 ...

  10. Sentry 开发者贡献指南 - 什么是 Scope, 什么是 Hub?

    当一个事件被捕获并发送到 Sentry 时,SDK 会将该事件数据与来自当前 scope 的额外信息合并.SDK 通常会在框架集成中为您自动管理 scope,您无需考虑它们.但是,您应该知道 scop ...