Solution -「ARC 104C」Fair Elevator
\(\mathcal{Description}\)
Link.
数轴从 \(1\sim 2n\) 的整点上有 \(n\) 个闭区间。你只知道每个区间的部分信息(可能不知道左或右端点,或者都不知道),问是否存在满足已知信息的 \(n\) 个区间,满足:
- 每个整点是恰好一个区间的端点。
- 所有包含同一个整点的区间长度相等。
输入信息可能不合法。
\(n\le100\)。
\(\mathcal{Solution}\)
老细节题了。(
考虑数轴上连续的一段区间 \([l,r]\),记 \(L=r-l+1\),若该区间内能够满足条件,则显然有:
- \(2|L\)。
- \([i,i+\frac{L}2]\) 可以存在于区间集合中。
记 \(f(i)\) 表示 \(1\sim i\) 能否合法,\(\mathcal O(n^3)\) 暴力转移即可。
但这个不是难点,if-else 才是难点 qwq。
- 输入可能多点重合,判否。
- 若有区间 \([l,?]\) 和 \([?,r]\),注意不能让 \(l\) 和 \(r\) 组成 \([l,r]\)。
对于第二点,一组 CF 上的 hack 数据为:
2
1 -1
-1 3
answer: No
多堆几个 if-else 就 A 啦!(
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#include <cstdlib>
#include <assert.h>
const int MAXN = 200;
int n, match[MAXN + 5];
bool f[MAXN + 5], vis[MAXN + 5];
inline bool check ( const int l, const int r ) {
int stp = r - l + 1 >> 1; // i -> i + stp.
for ( int i = l, j; ( j = i + stp ) <= r; ++ i ) {
bool acci = 1 <= match[i] && match[i] <= n << 1;
bool accj = 1 <= match[j] && match[j] <= n << 1;
if ( match[i] == -1 || ( acci && match[i] ^ j )
|| match[j] == ( n << 1 | 1 ) || ( accj && match[j] ^ i )
|| ( !acci && !accj && match[i] && match[j] ) ) {
return false;
}
}
return true;
}
int main () {
scanf ( "%d", &n );
for ( int i = 1, a, b; i <= n; ++ i ) {
scanf ( "%d %d", &a, &b );
if ( ~a && ~b && a >= b ) return puts ( "No" ), 0;
if ( ~a && ~b ) match[a] = b, match[b] = a;
else if ( ~a ) match[a] = n << 1 | 1;
else if ( ~b ) match[b] = -1;
if ( ~a ) {
if ( vis[a] ) return puts ( "No" ), 0;
vis[a] = true;
}
if ( ~b ) {
if ( vis[b] ) return puts ( "No" ), 0;
vis[b] = true;
}
}
f[0] = true;
for ( int i = 2; i <= n << 1; i += 2 ) {
for ( int j = 0; j < i && !f[i]; j += 2 ) {
f[i] = f[j] && check ( j + 1, i );
}
}
puts ( f[n << 1] ? "Yes" : "No" );
return 0;
}
Solution -「ARC 104C」Fair Elevator的更多相关文章
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「ARC 101D」「AT4353」Robots and Exits
\(\mathcal{Description}\) Link. 有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...
- Solution -「ARC 110D」Binomial Coefficient is Fun
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...
- Solution -「ARC 124E」Pass to Next
\(\mathcal{Description}\) Link. 有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...
- Solution -「ARC 126E」Infinite Operations
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...
- Solution -「ARC 126F」Affine Sort
\(\mathcal{Description}\) Link. 给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...
- Solution -「ARC 125F」Tree Degree Subset Sum
\(\mathcal{Description}\) Link. 给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...
- Solution -「ARC 125E」Snack
\(\mathcal{Description}\) Link. 把 \(n\) 种零食分给 \(m\) 个人,第 \(i\) 种零食有 \(a_i\) 个:第 \(i\) 个人得到同种零食数量 ...
- Solution -「ARC 058C」「AT 1975」Iroha and Haiku
\(\mathcal{Description}\) Link. 称一个正整数序列为"俳(pái)句",当且仅当序列中存在连续一段和为 \(x\),紧接着连续一段和为 \(y ...
随机推荐
- jsp文件中文乱码解决
文件顶加上 <%@ page contentType="text/html;charset=UTF-8" language="java" %>即可
- CentOS6.4安装Zookeeper-3.4.12图解教程
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6595380916590215683/ 安装工具 VMware_workstation_full_12.5.2 Ce ...
- IDEA安装与配置
一.安装 二.配置 配置字体:source pro code 忽略大小写提示 自动导包 多 tab显示 设置快捷键 设置鼠标悬浮提示 设置行号和方法分隔符 设置maven 断点调试 字符编码 自动删除 ...
- redis 主从复制实现
Redis 主从复制的实现 安装redis 修改redis的配置文件 redis.conf ②开启daemonize yes ③Pid文件名字 ④指定端口 ⑤Log文件名字 ⑥Dump.rdb名字 在 ...
- Linux防止文件被误删除或修改
chattr简介 Linux没有回收站,一旦文件或文件夹被误删除,要寻找回来很麻烦,不如事先对一些重要的文件做一些保护,这时我们需要一个命令chattr,其使用格式为 chattr 操作符 属性 文件 ...
- 【记录一个问题】铁威马NAS,升级系统后,所有安装的配置项都丢失了
因为铁威马的系统功能真的是弱,所以写了一些家庭照片处理的系统. 上上周升级了系统后,丢失了以下内容: anaconda 2.及其conda下python3环境的各种库 3.nginx的转发配置 铁威马 ...
- Cesium入门7 - Adding Terrain - 添加地形
Cesium入门7 - Adding Terrain - 添加地形 Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com ...
- golang中的排序算法实现
1. 冒泡排序算法实现 package main import "fmt" func main() { values := []int{3, 98, 55, 46, 22, 3, ...
- 如何通俗地理解docker
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...
- JVM之Java内存区域
JVM之Java内存区域 世界上并没有完美的程序,但我们并不因此而沮丧,因为写程序本来就是一个不断追求完美的过程. 一.JAVA内存区域 谈及JAVA虚拟机运行时数据区域就不得不祭出这张经典的图了: ...