\(\mathcal{Description}\)

  Link.

  数轴从 \(1\sim 2n\) 的整点上有 \(n\) 个闭区间。你只知道每个区间的部分信息(可能不知道左或右端点,或者都不知道),问是否存在满足已知信息的 \(n\) 个区间,满足:

  • 每个整点是恰好一个区间的端点。
  • 所有包含同一个整点的区间长度相等。

  输入信息可能不合法

  \(n\le100\)。

\(\mathcal{Solution}\)

  老细节题了。(

  考虑数轴上连续的一段区间 \([l,r]\),记 \(L=r-l+1\),若该区间内能够满足条件,则显然有:

  • \(2|L\)。
  • \([i,i+\frac{L}2]\) 可以存在于区间集合中。

  记 \(f(i)\) 表示 \(1\sim i\) 能否合法,\(\mathcal O(n^3)\) 暴力转移即可。

  但这个不是难点,if-else 才是难点 qwq。

  • 输入可能多点重合,判否。
  • 若有区间 \([l,?]\) 和 \([?,r]\),注意不能让 \(l\) 和 \(r\) 组成 \([l,r]\)。

  对于第二点,一组 CF 上的 hack 数据为:

2
1 -1
-1 3 answer: No

  多堆几个 if-else 就 A 啦!(

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <cstdlib>
#include <assert.h> const int MAXN = 200;
int n, match[MAXN + 5];
bool f[MAXN + 5], vis[MAXN + 5]; inline bool check ( const int l, const int r ) {
int stp = r - l + 1 >> 1; // i -> i + stp.
for ( int i = l, j; ( j = i + stp ) <= r; ++ i ) {
bool acci = 1 <= match[i] && match[i] <= n << 1;
bool accj = 1 <= match[j] && match[j] <= n << 1;
if ( match[i] == -1 || ( acci && match[i] ^ j )
|| match[j] == ( n << 1 | 1 ) || ( accj && match[j] ^ i )
|| ( !acci && !accj && match[i] && match[j] ) ) {
return false;
}
}
return true;
} int main () {
scanf ( "%d", &n );
for ( int i = 1, a, b; i <= n; ++ i ) {
scanf ( "%d %d", &a, &b );
if ( ~a && ~b && a >= b ) return puts ( "No" ), 0;
if ( ~a && ~b ) match[a] = b, match[b] = a;
else if ( ~a ) match[a] = n << 1 | 1;
else if ( ~b ) match[b] = -1;
if ( ~a ) {
if ( vis[a] ) return puts ( "No" ), 0;
vis[a] = true;
}
if ( ~b ) {
if ( vis[b] ) return puts ( "No" ), 0;
vis[b] = true;
}
}
f[0] = true;
for ( int i = 2; i <= n << 1; i += 2 ) {
for ( int j = 0; j < i && !f[i]; j += 2 ) {
f[i] = f[j] && check ( j + 1, i );
}
}
puts ( f[n << 1] ? "Yes" : "No" );
return 0;
}

Solution -「ARC 104C」Fair Elevator的更多相关文章

  1. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  2. Solution -「ARC 101D」「AT4353」Robots and Exits

    \(\mathcal{Description}\)   Link.   有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...

  3. Solution -「ARC 110D」Binomial Coefficient is Fun

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...

  4. Solution -「ARC 124E」Pass to Next

    \(\mathcal{Description}\)   Link.   有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...

  5. Solution -「ARC 126E」Infinite Operations

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...

  6. Solution -「ARC 126F」Affine Sort

    \(\mathcal{Description}\)   Link.   给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...

  7. Solution -「ARC 125F」Tree Degree Subset Sum

    \(\mathcal{Description}\)   Link.   给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...

  8. Solution -「ARC 125E」Snack

    \(\mathcal{Description}\)   Link.   把 \(n\) 种零食分给 \(m\) 个人,第 \(i\) 种零食有 \(a_i\) 个:第 \(i\) 个人得到同种零食数量 ...

  9. Solution -「ARC 058C」「AT 1975」Iroha and Haiku

    \(\mathcal{Description}\)   Link.   称一个正整数序列为"俳(pái)句",当且仅当序列中存在连续一段和为 \(x\),紧接着连续一段和为 \(y ...

随机推荐

  1. Echart可视化学习(八)

    文档的源代码地址,需要的下载就可以了(访问密码:7567) https://url56.ctfile.com/f/34653256-527823386-04154f 正文: 新增需求 点击 2020年 ...

  2. Nginx 反向代理解决跨域问题分析

    当你遇到跨域问题,不要立刻就选择复制去尝试.请详细看完这篇文章再处理 .我相信它能帮到你. 分析前准备: 前端网站地址:http://localhost:8080 服务端网址:http://local ...

  3. 【笔记】论文阅读:《Gorilla: 一个快速, 可扩展的, 内存式时序数据库》

    英文:Gorilla: A fast, scalable, in-memory time series database 中文:Gorilla: 一个快速, 可扩展的, 内存式时序数据库

  4. vue学习2-bind属性绑定

    需要加上 v-html才能显示网页

  5. 34.AVL树

    1.创建Node结点 class Node { int value; Node left; Node right; public Node(int value) { this.value = valu ...

  6. ps -ef aux区别

    第一点  -ef是System V展示风格,而aux是BSD风格.    BSD风格 字段含义:  USER:用户名称  PID:进程号  %CPU:进程占用CPU的百分比  %MEM:进程占用物理内 ...

  7. 005 Linux 命令三剑客之-sed

    grep:数据查找定位 awk:数据切片,数据格式化,功能最复杂 sed:数据修改 01 Linux 命令三剑客? 三剑客各有所长,和锅锅一一搞起就是了! sed:擅长数据修改. grep:擅长数据查 ...

  8. mysql加强(6)~子查询简单介绍、子查询分类

    一.子查询简单介绍 1.什么是子查询? 一个查询之中嵌套了其他的若干查询. 在使用select 语句查询时,有时候where的查询条件中的限制条件不是一个确定的值,而是一个来自于另一个查询的结果. 子 ...

  9. 学习JAVAWEB第十四天

    ## JSP:入门学习 1. 概念: * Java Server Pages: java服务器端页面 * 可以理解为:一个特殊的页面,其中既可以指定定义html标签,又可以定义java代码 * 用于简 ...

  10. Python初学笔记之可变类型、不可变类型

    python中 可变类型: 列表 list 字典 dict 不可变类型: 数字型:int.float.complex.bool.long 字符型 str 元组 tuple id(i):通过id查看变量 ...