在限流时一般会限制每秒或每分钟的请求数,简单点一般会采用计数器算法,这种算法实现相对简单,也很高效,但是无法应对瞬时的突发流量。

比如限流每秒100次请求,绝大多数的时间里都不会超过这个数,但是偶尔某一秒钟会达到120次请求,接着很快又会恢复正常,假设这种突发的流量不会对系统稳定性带来实质性的影响,则可以在一定程度上允许这种瞬时的突发流量,从而为用户带来更好的可用性体验。这就是令牌桶算法的用武之地。

该算法的基本原理是:有一个令牌桶,容量是X,每Y单位时间会向桶中放入Z个令牌,如果桶中的令牌数超过X,则丢弃令牌;请求要想通过首先需要从令牌桶中获取一个令牌,获取不到令牌则拒绝请求。可以看出对于令牌桶算法X、Y、Z这几个数的设定特别重要,Z应该略大于绝大数时候的Y单位时间内的请求数,系统会长期处于这个状态,X可以是系统允许承载的瞬时最大请求数,系统不能长时间处于这个状态。

这里介绍一个ASP.NET Core的中间件来满足令牌桶限流需求:FireflySoft.RateLimit.AspNetCore。使用步骤如下:

1、安装Nuget包

有多种安装方式,选择自己喜欢的就行了。

包管理器命令:

Install-Package FireflySoft.RateLimit.AspNetCore

或者.NET命令:

dotnet add package FireflySoft.RateLimit.AspNetCore

或者项目文件直接添加:

<ItemGroup>
<PackageReference Include="FireflySoft.RateLimit.AspNetCore" Version="2.*" />
</ItemGroup>

2、使用中间件

在Startup中使用中间件,演示代码如下(下边会有详细说明):

public void ConfigureServices(IServiceCollection services)
{
...
app.AddRateLimit(new InProcessTokenBucketAlgorithm(
new[] {
new TokenBucketRule(30,10,TimeSpan.FromSeconds(1))
{
ExtractTarget = context =>
{
return (context as HttpContext).Request.Path.Value;
},
CheckRuleMatching = context =>
{
return true;
},
Name="default limit rule",
}
})
);
...
} public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
...
app.UseRateLimit();
...
}

如上需要先注册服务,然后使用中间件。

注册服务的时候需要提供限流算法和对应的规则:

  • 这里使用进程内令牌桶算法,对于分布式服务还可以使用Redis令牌桶算法,支持StackExchange.Redis。
  • 桶的容量是30,每秒流入10个令牌。
  • ExtractTarget用于提取限流目标,这里是每个不同的请求Path。如果有IO请求,这里还支持对应的异步方法ExtractTargetAsync。
  • CheckRuleMatching用于验证当前请求是否限流。如果有IO请求,这里还支持对应的异步方法CheckRuleMatchingAsync。
  • 默认被限流时会返回HttpStatusCode 429,可以在AddRateLimit时使用可选参数error自定义这个值,以及Http Header和Body中的内容。

基本的使用就是上边例子中的这些了。


另外这个项目也支持.Net Framework,需要安装另一个包 FireflySoft.RateLimit.AspNet,如果你的程序基于.net 4.x,可以选择这个版本。

同时在非Web应用场景也有对应的包支持:FireflySoft.RateLimit.Core ,只不过需要自己处理限流结果。

他们的使用方法都很类似,逻辑也很简单,都是需要先创建一个算法实例,然后通过这个实例去检查每一次请求,根据业务需要处理检查结果就可以了。

ASP.NET Core中使用令牌桶限流的更多相关文章

  1. ASP.NET Core中使用固定窗口限流

    算法原理 固定窗口算法又称计数器算法,是一种简单的限流算法.在单位时间内设定一个阈值和一个计数值,每收到一个请求则计数值加一,如果计数值超过阈值则触发限流,如果达不到则请求正常处理,进入下一个单位时间 ...

  2. ASP.NET Core中使用滑动窗口限流

    滑动窗口算法用于应对请求在时间周期中分布不均匀的情况,能够更精确的应对流量变化,比较著名的应用场景就是TCP协议的流量控制,不过今天要说的是服务限流场景中的应用. 算法原理 这里假设业务需要每秒钟限流 ...

  3. ASP.NET Core中使用漏桶算法限流

    漏桶算法是限流的四大主流算法之一,其应用场景各种资料中介绍的不多,一般都是说应用在网络流量控制中.这里举两个例子: 1.目前家庭上网都会限制一个固定的带宽,比如100M.200M等,一栋楼有很多的用户 ...

  4. coding++:高并发解决方案限流技术-使用RateLimiter实现令牌桶限流-Demo

    RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率. 通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位时 ...

  5. 高并发解决方案限流技术-----使用RateLimiter实现令牌桶限流

    1,RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率.通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位 ...

  6. Redis令牌桶限流

    一 .场景描述 在开发接口服务器的过程中,为了防止客户端对于接口的滥用,保护服务器的资源, 通常来说我们会对于服务器上的各种接口进行调用次数的限制.比如对于某个 用户,他在一个时间段(interval ...

  7. 漏桶、令牌桶限流的Go语言实现

    限流 限流又称为流量控制(流控),通常是指限制到达系统的并发请求数. 我们生活中也会经常遇到限流的场景,比如:某景区限制每日进入景区的游客数量为8万人:沙河地铁站早高峰通过站外排队逐一放行的方式限制同 ...

  8. 令牌桶限流思路分享(PHP+Redis实现机制)

    一 .场景描述 在开发接口服务器的过程中,为了防止客户端对于接口的滥用,保护服务器的资源, 通常来说我们会对于服务器上的各种接口进行调用次数的限制.比如对于某个 用户,他在一个时间段(interval ...

  9. Go 分布式令牌桶限流 + 兜底策略

    上篇文章提到固定时间窗口限流无法处理突然请求洪峰情况,本文讲述的令牌桶线路算法则可以比较好的处理此场景. 工作原理 单位时间按照一定速率匀速的生产 token 放入桶内,直到达到桶容量上限. 处理请求 ...

随机推荐

  1. CORS OPTIONS

    CORS OPTIONS A CORS preflight request is a CORS request that checks to see if the CORS protocol is u ...

  2. 如何用python自动编写《赤壁赋》word文档

    目录 前言 安装-python-docx 一.自动编写<赤壁赋> 准备数据 新建文档 添加标题 添加作者 添加朝代 添加图片 添加段落 保存word文档 二.自动提取<赤壁赋> ...

  3. JS判断对象是否包含某个属性

    1.使用hasOwnProperty()判断 hasOwnProperty方法的参数就是要判断的属性名称,当对象的属性存在时返回true,否则返回false. var obj = { name:'ja ...

  4. SpringBoot整合Mongodb4.0

    本品文章只做学习使用: 安装mongodb推荐博客:https://www.jianshu.com/p/a75e26e5f635 1:如何在外网环境下开放mongodb 服务器版本:centos7.6 ...

  5. 五大自动化测试的Python框架

    1.Robot Framework 作为最重要的Python测试框架之一,Robot Framework主要被用在测试驱动(test-driven)类型的开发与验收中.虽然是由Python开发而来,但 ...

  6. 阻塞队列——四组API

    方式 抛出异常 有返回值,不抛出异常 阻塞等待 超时等待 添加 add() offer() put() offer(...) 移除 remove() poll() take() poll(...) 检 ...

  7. wxWidgets源码分析(5) - 窗口管理

    窗口管理 所有的窗口均继承自wxTopLevelWindows: WXDLLIMPEXP_DATA_CORE(wxWindowList) wxTopLevelWindows; wxTopLevelWi ...

  8. 后端程序员之路 17、LaTeX公式

    之前的文章写了两个公式:d(x,y)=\sqrt{\sum_{i=1}^{n}(x_i-y_i)^2} H_x=-\sum_{i=1}^{n}p(x_i)\log_{2}{p(x_i)} LaTex ...

  9. React 中的 onInput/onChange

    参考链接:https://stackoverflow.com/questions/38256332/in-react-whats-the-difference-between-onchange-and ...

  10. 面试常备,字符串三剑客 String、StringBuffer、StringBuilder

    尽人事,听天命.博主东南大学硕士在读,热爱健身和篮球,乐于分享技术相关的所见所得,关注公众号 @ 飞天小牛肉,第一时间获取文章更新,成长的路上我们一起进步 本文已收录于 「CS-Wiki」Gitee ...